The nucleus of a mammalian cell undergoes profound reorganization when the cell enters mitosis and a number of proteins involved at various levels of the cell cycle have been characterized. The presence of mitotic-specific proteins has been reported and their roles are important in understanding the mechanics of cell division. The ability of antibodies to recognize mitotic protein antigens and further inhibit mitosis is potentially valuable in their role as therapeutic and diagnostic agents in cancer therapy. In this study, we have aimed to analyze proteins isolated from mitotic cells of Chinese hamster ovary (CHO) cells and their significant role in inhibiting mitosis. The proteins extracted from mitotic cells were processed and antibodies produced. It was observed that the secondary response that yielded an antiserum of 1:8 titer was predominantly IgG. The antiserum was effective in inhibiting mitosis in CHO cells in culture in a dose-dependent manner. Although inhibition of mitosis was apparent by cell proliferation studies, there was no apparent effect of the antiserum on other cell morphology and culture characteristics. The unique molecular structure of the antibody by which it bivalently binds to a broad array of antigenic epitopes serves as the foundation of its utility. These antibodies, being polyclonal in nature, are targeted against a whole range of proteins; and their multiple epitopes involved in process of cell division might hence mediate recognition or inhibition of function of such proteins in a wholesome manner and thus accomplish inhibition of mitotic progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0973-1482.27587 | DOI Listing |
Emerg Microbes Infect
January 2025
State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
Marburg virus disease (MVD) is a severe infectious disease characterized by fever and profound hemorrhage caused by the Marburg virus (MARV), with a mortality rate reaching 90%, posing a significant threat to humans. MARV lies in its classification as a biosafety level four (BSL-4) pathogen, which demands stringent experimental conditions and substantial funding. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Chinese Hamster Ovary (CHO) cells are essential in biopharmaceutical manufacturing. Scientists use CRISPR to enhance productivity. mRNAs contain UTRs that regulate gene expression, affecting protein abundance.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Molecular Signaling and Biochemistry, Kyushu Dental University, Kokurakitaku, Kitakyushu, Fukuoka, Japan.
Bone morphogenetic protein (BMP)-3b, also known as growth differentiation factor (GDF)-10, belongs to the transforming growth factor (TGF)-β superfamily. Despite being named a BMP, BMP3b is considered as an intermediate between the TGFβ/activin/myostatin and BMP/GDF subgroups of the TGFβ superfamily. Myoblast differentiation is tightly regulated by various cytokines, including the TGFβ superfamily members.
View Article and Find Full Text PDFFront Immunol
December 2024
Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany.
Introduction: Autoantibody-mediated complement activation plays an essential role in a variety of autoimmune disorders. However, the role of complement in systemic sclerosis (SSc) remains largely unknown. In this study, we aimed to determine the role of complement C3 in the development of a recently described SSc mouse model based on autoimmunity to angiotensin II receptor type 1 (AT1R).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China. Electronic address:
Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!