Stochastic noise and synchronisation during dictyostelium aggregation make cAMP oscillations robust.

PLoS Comput Biol

Control and Instrumentation Group, Department of Engineering, University of Leicester, Leicester, United Kingdom.

Published: November 2007

Stable and robust oscillations in the concentration of adenosine 3', 5'-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca(2+) oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065893PMC
http://dx.doi.org/10.1371/journal.pcbi.0030218DOI Listing

Publication Analysis

Top Keywords

camp observed
8
ensuring robustness
8
oscillations
5
stochastic noise
4
noise synchronisation
4
synchronisation dictyostelium
4
dictyostelium aggregation
4
camp
4
aggregation camp
4
camp oscillations
4

Similar Publications

In Europe, the prevalence of AF is expected to increase 2.5-fold over the next 50 years with a lifetime risk of 1 in 3-5 individuals after the age of 55 years and a 34% rise in AF-related strokes. The PREFATE project investigates evidence gaps in the early detection of atrial fibrillation in high-risk populations within primary care.

View Article and Find Full Text PDF

Eicosapentaenoic acid as an antibiofilm agent disrupts mature biofilms of .

Biofilm

June 2025

Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .

View Article and Find Full Text PDF

This study aimed to examine potential changes in the anthropometric and motor characteristics of volleyball players aged 17.98 ± 0.51 years after participation in a week-long sports camp.

View Article and Find Full Text PDF

Plant Toll/interleukin-1 receptor (TIR) domains function as NADases and ribosyl-transferases generating second messengers that trigger hypersensitive responses. TIR-X (TX) proteins contain a TIR domain with or without various C-terminal domains and lack the canonical nucleotide-binding site and leucine-rich repeat domain. In a previous study, we identified an Arabidopsis thaliana activation-tagging line with severe growth defects caused by the overexpression of the AtTX12 gene.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!