Comprehensive knowledge about the plasma membrane protein profile of a given brain region, at defined developmental stages, will greatly foster the understanding of brain function and dysfunction. Protocols are required which selectively enrich plasma membranes from small brain regions, thereby resulting in high yields. Here, we present a suitable protocol that is based on aqueous polymer two-phase systems. It is material saving, easy to perform, fast, and low-priced. Evidence for its effectiveness was obtained by marker enzyme assays, immunoblot analyses, and mass spectrometry. Plasma membranes from all parts of the cells (somata, dendrites, and axons) were enriched, whereas there was a reduction of mitochondria and endoplasmic reticulum. The total of 15.0% of the initial activity of the plasma membrane marker was recovered, while the activity of the mitochondrial marker and the marker for the endoplasmic reticulum was 0.2% of the initial activity. Mass spectrometric analyses of proteins purified from approximately one-fourth of rat cerebellum (i.e., 80 mg of tissue) resulted in the identification of 525 different proteins, with 27.3% (gene ontology) or 38.2% (gene cards) being allocated to the plasma membrane. When accepting 4.7% of the initial mitochondrial marker activity and 2.9% of the initial activity of the marker for the endoplasmic reticulum as contaminations, the yield of the plasma membrane marker increased to 28.8%. Under these conditions, 586 different proteins were identified by mass spectrometry, 26.1-36.5% of which were plasma membrane proteins. Taken together, our protocol represents a powerful tool for the analysis of the plasma membrane subproteome of distinct brain regions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr0704736DOI Listing

Publication Analysis

Top Keywords

plasma membrane
24
plasma membranes
12
endoplasmic reticulum
12
initial activity
12
plasma
9
aqueous polymer
8
polymer two-phase
8
two-phase systems
8
analysis plasma
8
brain regions
8

Similar Publications

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Unlabelled: Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital.

View Article and Find Full Text PDF

Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks.

Sci Adv

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!