N-myristoylation is a co-translational, irreversible addition of a fatty acyl moiety to the amino terminus of many eukaryotic cellular proteins. These myristoylated proteins in the cell have diverse biological functions such as signal transduction, cellular transformation and oncogensis. Known myristoylated proteins [Src family kinases, the catalytic subunit of cAMP-dependent protein kinase and calcineurin (CaN)] are either protein kinases or a protein phosphatases which modulate various cellular metabolic processes. Myristoylation is catalyzed by N-myristoyltransferase (NMT) and is recognized to be a widespread and functionally important modification of proteins. The main objective of this review is to focus on the potential role of NMT and CaN in epileptic brain and its involvement in neuronal apoptosis. The findings on the interaction of NMT and CaN with various signaling molecules in epileptic chickens adds to our understanding of the mechanism of CaN signaling in neuronal apoptosis. Understanding the regulation of NMT by specific inhibitors may help us to control the action of this enzyme on its specific substrates and may lead to improvements in the management of various neurological disorders like Alzheimer's disease, ischemia and epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2007.09.004 | DOI Listing |
J Allergy Clin Immunol
January 2025
Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:
Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.
Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.
Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.
Rev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Cell membranes contain multiple charged lipids that bind proteins dynamically and their spatial organization on the inner/outer membrane leaflet, or in spatially localized areas has considerable biological importance. Myristoylated alanine-rich C kinase substrate (MARCKS) proteins and their roles as electrostatic switches are one example covered. Cell surface charge needs to be monitored and regulated continually and the roles of lipid flippases and scramblases and their electrical regulation also are considered.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway. Electronic address:
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy.
The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!