An acetylation switch in p53 mediates holo-TFIID recruitment.

Mol Cell

Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.

Published: November 2007

Posttranslational modifications mediate important regulatory functions in biology. The acetylation of the p53 transcription factor, for example, promotes transcriptional activation of target genes including p21. Here we show that the acetylation of two lysine residues in p53 promotes recruitment of the TFIID subunit TAF1 to the p21 promoter through its bromodomains. UV irradiation of cells diacetylates p53 at lysines 373 and 382, which in turn recruits TAF1 to a distal p53-binding site on the p21 promoter prior to looping to the core promoter. Disruption of acetyl-p53/bromodomain interaction inhibits TAF1 recruitment to both the distal p53-binding site and the core promoter. Further, the TFIID subunits TAF4, TAF5, and TBP are detected on the core promoter prior to TAF1, suggesting that, upon DNA damage, distinct subunits of TFIID may be recruited separately to the p21 promoter and that the transcriptional activation depends on posttranslational modification of the p53 transcription factor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2007.09.006DOI Listing

Publication Analysis

Top Keywords

p21 promoter
12
core promoter
12
p53 transcription
8
transcription factor
8
transcriptional activation
8
distal p53-binding
8
p53-binding site
8
promoter prior
8
promoter
6
p53
5

Similar Publications

The role of RGPR-p117, a transcription factor, which binds to the TTGGC motif in the promoter region of the regucalcin gene, in cell regulation remains to be investigated. This study elucidated whether RGPR-p117 regulates the activity of triple-negative human breast cancer MDA-MB-231 cells in vitro. The wild-type and RGPR-p117-overexpressing cancer cells were cultured in DMEM supplemented with fetal bovine serum.

View Article and Find Full Text PDF

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Astragali Radix-Angelicae Sinensis Radix inhibits the activation of vascular adventitial fibroblasts and vascular intimal proliferation by regulating the TGF-β1/Smad2/3 pathway.

J Ethnopharmacol

December 2024

School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:

Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.

Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.

View Article and Find Full Text PDF

Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells.

Int J Mol Sci

November 2024

Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland.

The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.

View Article and Find Full Text PDF

Evolution of a novel engineered tripartite viral genome of a torradovirus.

Virus Evol

November 2024

Department of Plant Protection, Instituto de Ciencias Agrarias, ICA-CSIC,Calle Serrano 115 DPDO, Madrid, 28006, Spain.

Viruses in the include monopartite and bipartite genomes, suggesting the possibility to study members of this family to experimentally address evolutionary transitions resulting in multipartitism. Torradoviruses are bipartite members of the family characterized by a genus-specific 5' open reading frame, named P21, encoded by RNA2. Here, in a study originally intended to verify if P21 can function , we attempted to provide P21 from a third P21-expressing construct under control of the 35S promoter and containing the 5'- and 3'-untranslated regions (UTRs) of wild-type (WT) RNA2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!