Methylmercury and omega-3 fatty acids: co-occurrence of dietary sources with emphasis on fish and shellfish.

Environ Res

United States Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Washington, DC 20460, USA.

Published: May 2008

Despite many claims of broad benefits, especially for in utero development, derived from the consumption of fish as a source of omega-3 fatty acids, individual species of fish and shellfish provide substantially varied levels of these fatty acids. Likewise, mean methylmercury (MeHg) concentrations for fish and shellfish species differ by greater than an order of magnitude. Consideration of within-species variability would increase this variation farther. Exposures to both MeHg and to the omega-3 fatty acids reflect dietary choices including species consumed, frequency of consumption, and portion size. In view of these sources of variability, data on dietary patterns and blood mercury (microg/L) among women of child-bearing age (e.g., 16-49 years) provided an indication of exposures in the United States. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) for survey years 1999--2002, calculated consumption of MeHg and omega-3 fatty acids from fish and shellfish have been estimated based on results from 3614 women who provided 30-day dietary recall and 24-hours records. Statistics from NHANES when appropriately weighted are representative of the US population. The association between dietary MeHg from fish and shellfish and dietary fish intake yielded a Pearson correlation of 0.68. The Pearson correlation between estimated 30-day intake from fish/shellfish consumption for omega-3 fatty acids and MeHg was 0.66. Evaluation of the most commonly consumed fish and shellfish species as sources of MeHg and omega-3 fatty acids indicated that salmon followed by shrimp are principal sources of omega-3 fatty acids and are lesser sources of MeHg, in contrast with tuna which provides omega-3 fatty acids, but considerably higher levels of MeHg. These data can be used to guide selection of individual fish and shellfish species that are higher in omega-3 content and low in MeHg concentrations. This more refined dietary approach contrasts with generic recommendations that simply advise increasing fish consumption as a path toward improving cardiovascular health and providing benefits for in utero development or avoiding fish altogether.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2007.09.011DOI Listing

Publication Analysis

Top Keywords

fatty acids
36
omega-3 fatty
32
fish shellfish
28
shellfish species
12
mehg omega-3
12
fish
11
fatty
9
acids
9
mehg
9
benefits utero
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!