The HSV-1 UL20 protein (UL20p) and glycoprotein K (gK) are both important determinants of cytoplasmic virion morphogenesis and virus-induced cell fusion. In this manuscript, we examined the effect of UL20 mutations on the coordinate transport and Trans Golgi Network (TGN) localization of UL20p and gK, virus-induced cell fusion and infectious virus production. Deletion of 18 amino acids from the UL20p carboxyl terminus (UL20 mutant 204t) inhibited intracellular transport and cell-surface expression of both gK and UL20, resulting in accumulation of UL20p and gK in the endoplasmic reticulum (ER) in agreement with the inability of 204t to complement UL20-null virus replication and virus-induced cell fusion. In contrast, less severe carboxyl terminal deletions of either 11 or six amino acids (UL20 mutants 211t and 216t, respectively) allowed efficient UL20p and gK intracellular transport, cell-surface expression and TGN colocalization. However, while both 211t and 216t failed to complement for infectious virus production, 216t complemented for virus-induced cell fusion, but 211t did not. These results indicated that the carboxyl terminal six amino acids of UL20p were crucial for infectious virus production, but not involved in intracellular localization of UL20p/gK and concomitant virus-induced cell fusion. In the amino terminus of UL20, UL20p mutants were produced changing one or both of the Y38 and Y49 residues found within putative phosphorylation sites. UL20p tyrosine-modified mutants with both tyrosine residues changed enabled efficient intracellular transport and TGN localization of UL20p and gK, but failed to complement for either infectious virus production, or virus-induced cell fusion. These results show that UL20p functions in cytoplasmic envelopment are separable from UL20 functions in UL20p intracellular transport, cell surface expression and virus-induced cell fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2186317PMC
http://dx.doi.org/10.1186/1743-422X-4-120DOI Listing

Publication Analysis

Top Keywords

virus-induced cell
32
cell fusion
32
intracellular transport
20
infectious virus
16
virus production
16
amino acids
12
ul20p
11
ul20
9
cell
9
ul20 protein
8

Similar Publications

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

Epstein-Barr virus-induced 3 (EBI3) functions as a component of the heterodimer cytokine IL-27, which regulates innate and acquired immune responses. The expression of EBI3 gene is induced by Toll-like receptors (TLRs). Repeated treatment with imiquimod (IMQ), a TLR7 agonist, induces splenomegaly and cytopaenia due to increased splenic function.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!