Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described electricigens, in which cells are primarily attached to the anode, at least as many of the S. oneidensis cells were planktonic as were attached to the anode. These results demonstrate that S. oneidensis may conserve energy for growth with an electrode serving as an electron acceptor and suggest that multiple strategies for electron transfer to fuel cell anodes exist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228398PMC
http://dx.doi.org/10.1111/j.1574-6968.2007.00964.xDOI Listing

Publication Analysis

Top Keywords

fuel cells
12
shewanella oneidensis
8
attached anode
8
cells
5
growth high
4
high planktonic
4
planktonic biomass
4
biomass shewanella
4
oneidensis
4
fuel
4

Similar Publications

Developing nanoscale platforms with high integration, assembly efficiency, and structural stability for performing complex computations in specific cells remains a significant challenge. To address this, the Three-dimensional Hierarchical Octahedral Robotic (THOR) DNA nanoplatform is introduced, which integrates targeting, logic computation, and sensing modules within a single framework. This nanoplatform specifically binds to cancer cell surface proteins, releasing aptamer-linked fuel chains to initiate subsequent computational processes.

View Article and Find Full Text PDF

Hydrogen plays a key role in maximizing the benefits of renewable energy, and the widespread adoption of water electrolyzers and fuel cells, which convert the chemical energy of hydrogen and electrical energy into each other, is strongly desired. Electrocatalysts used in these devices, typically in the form of nanoparticles, are crucial components because they significantly affect cell performance, but their raw materials rely on limited resources. In catalyst research, electrochemical experimental studies using model catalysts, such as single-crystal electrodes, have provided valuable information on reaction and degradation mechanisms, as well as catalyst development strategies aimed at overcoming the trade-off between activity and durability, across spatial scales ranging from the atomic to the nanoscale.

View Article and Find Full Text PDF

Superior Active and Durable Air Electrode for Protonic Ceramic Cells by Metal-Oxide Bond Engineering.

Small

January 2025

College of Materials Science and Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China.

Protonic ceramic cells (PCCs) have been identified as promising energy conversion devices, offering flexible fuel options and reduced operating consumption at intermediate temperatures. However, the application of traditional cobalt-based perovskite air electrodes in PCCs is hindered by their insufficient durability and high coefficient of thermal expansion. In this study, a straightforward metal-oxygen bond engineering is conducted, introducing a single-phase perovskite, BaLa(FeZn)NO (BLFZN0.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.

View Article and Find Full Text PDF

Suppressing Cation Interdiffusion at CeO/ZrO Heterointerfaces via Dopant Segregation.

ACS Appl Mater Interfaces

January 2025

Hydrogen Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.

Cation interdiffusion as a result of a chemical-potential gradient occurring at heterointerfaces is often regarded as an unfavorable side reaction and is typically suppressed through the use of a diffusion barrier layer. In this study, we propose a straightforward method for suppressing interdiffusion that involves the creation of nanometer-thick diffusion barrier layers by means of dopant segregation. Using the CeO/ZrO heterointerface in this study, we demonstrate that a Sc acceptor dopant tends to accumulate at the heterointerface during the sintering process, especially at the edge of the CeO grain boundary, thereby effectively suppressing Ce-Zr interdiffusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!