Fast resistive reconnection regime in the nonlinear evolution of double tearing modes.

Phys Rev Lett

State Key Lab of Materials Modifications by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China 116024.

Published: November 2007

Phases of nonlinear double tearing modes are studied numerically. The first two phases lead to the formation and growth of magnetic islands and are followed by a fast reconnection phase to complete the process, driven by a process of neighboring magnetic separatrices merging and magnetic islands coupling. The fast growth can be understood as a result of the island interaction equivalent to a steadily inward flux boundary driven. Resistivity dependences for various phases are studied and shown by scaling analysis for the first time. It is found that after an early Sweet-Parker phase with a eta(1/2)-scale, a slow nonlinear phase in a Rutherford regime with a eta(1)-scale is followed by the fast reconnection phase with a eta(1/5)-scale.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.185004DOI Listing

Publication Analysis

Top Keywords

double tearing
8
tearing modes
8
magnetic islands
8
fast reconnection
8
reconnection phase
8
fast
4
fast resistive
4
resistive reconnection
4
reconnection regime
4
regime nonlinear
4

Similar Publications

Background: Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament (ACL) tears are frequent injuries in athletes that often require surgical reconstruction so that patients may return to their previous levels of performance. While existing data on patient-reported outcomes are similar between bone-patellar tendon-bone (BTB) and hamstring tendon (HT) autografts, the literature regarding return to sport (RTS), return to previous levels of sport activity, and graft failure rate remains limited.

Purpose: To compare rates of RTS, return to previous activity levels, and graft retears among athletes undergoing primary ACL reconstruction using a BTB versus HT autograft.

View Article and Find Full Text PDF

Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.

Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.

View Article and Find Full Text PDF

The clinicopathologic conditions of the long head of the biceps tendon vary, encompassing tendinitis, peritendinous inflammation, hypertrophy, and partial or complete tears. These symptoms are typically linked with SLAP tears and instability of the long head of the biceps tendon, often resulting in partial displacement or complete dislocation. The choice between tenotomy and tenodesis depends on varied factors.

View Article and Find Full Text PDF

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!