We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity epsilon and magnetic permeability micro, which allow one to construct devices that function as invisible tunnels. These allow EM wave propagation between the regions at the two ends of a tunnel, but the tunnels themselves and the regions they enclose are not detectable to lateral EM observations. Such devices act as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-à-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles, invisible cables, and scopes for MRI-assisted surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.183901DOI Listing

Publication Analysis

Top Keywords

virtual magnetic
8
magnetic monopoles
8
wave propagation
8
electromagnetic wormholes
4
wormholes virtual
4
monopoles metamaterials
4
metamaterials describe
4
describe configurations
4
configurations electromagnetic
4
electromagnetic material
4

Similar Publications

Validation of a Monte Carlo-based dose calculation engine including the 1.5 T magnetic field for independent dose-check in MRgRT.

Phys Med

January 2025

Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024 Negrar di Valpolicella, VR, Italy; University of Brescia, Brescia, Italy.

Purpose: Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (Monaco) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCa (S).

View Article and Find Full Text PDF

Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories.

View Article and Find Full Text PDF

Purpose: To clarify the location of the popliteal artery (PA) is relative to the tibial osteotomy plane in patients with medial and lateral unicompartmental knee osteoarthritis (KOA) undergoing UKA.

Methods: Preoperative MRI and postoperative radiographs obtained from 50 patients with unicompartmental KOA who underwent fixed-bearing UKA were analyzed. The amount of tibial resection was determined from the surgical records, and a line was drawn parallel to the tibial posterior tilt angle on the sagittal MR image to create a virtual tibial cut line.

View Article and Find Full Text PDF

Introduction: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles.

View Article and Find Full Text PDF

Objective: In-depth investigation of the diagnostic performance of dual-energy CT (DECT) virtual non-calcium (VNCa) technique for sacroiliac joint bone marrow edema (BME) in patients with ankylosing spondylitis(AS).

Methods: A total of 42 patients with AS)who underwent sacroiliac joint MRI and DECT scans on the same day at our Rheumatology and Immunology Department between August 2022 and June 2023 were selected. Using MRI as the reference standard, the presence of BME on the iliac and sacral surfaces was evaluated, resulting in the categorization of patients into BME-positive and BME-negative groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!