We present a low-temperature scanning tunneling microscopy study of the alpha-Sn/Si(111) surface that demonstrates the fluctuating behavior of the Sn adatoms. The dynamical fluctuation model, successfully applied in describing the alpha-Sn/Ge(111) surface, is proposed for the related alpha-Sn/Si(111) surface too, although with a much lower transition temperature. In addition, a new phenomenon appears responsible for the unexpected evidence that the average oscillation frequency remains constant at temperatures lower than 15 K, in contradiction to the Arrhenius law. We explain this phenomenon as quantum tunneling of Sn adatoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.99.166103 | DOI Listing |
J Phys Condens Matter
July 2010
CNR-Istituto di Struttura della Materia, via del Fosso del Cavaliere 100, I-00133 Roma, Italy.
After almost three decades since the invention of the scanning tunnelling microscope (STM) its application to the study of dynamic processes at surfaces is attracting a great deal of interest due to its unique capacity to observe such processes at the atomic level. The α-phase of group IV adatoms on Ge(111) and Si(111) is the ideal playground for the analysis of critical phenomena and represents a prototype of a two-dimensional electron system exhibiting thermally activated peculiar Sn adatom dynamics. This paper will relate the study of adatom dynamics at the α-Sn/Ge(111) and α-Sn/Si(111) surfaces, discussing in detail the methods we used for such kinds of time-resolved measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!