Electron capture and transport mediated by lattice solitons.

Phys Rev E Stat Nonlin Soft Matter Phys

Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.

Published: October 2007

We study electron transport in a one-dimensional molecular lattice chain. The molecules are linked by Morse interaction potentials. The electronic degree of freedom, expressed in terms of a tight binding system, is coupled to the longitudinal displacements of the molecules from their equilibrium positions along the axis of the lattice. More specifically, the distance between two sites influences in an exponential fashion the corresponding electronic transfer matrix element. We demonstrate that when an electron is injected in the undistorted lattice it causes a local deformation such that a compression results leading to a lowering of the electron's energy below the lower edge of the band of linear states. This corresponds to self-localization of the electron due to a polaronlike effect. Then, if a traveling soliton lattice deformation is launched a distance apart from the electron's position, upon encountering the polaronlike state it captures the latter dragging it afterwards along its path. Strikingly, even when the electron is initially uniformly distributed over the lattice sites a traveling soliton lattice deformation gathers the electronic amplitudes during its traversing of the lattice. Eventually, the electron state is strongly localized and moves coherently in unison with the soliton lattice deformation. This shows that for the achievement of coherent electron transport we need not start with the polaronic effect.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.76.046602DOI Listing

Publication Analysis

Top Keywords

soliton lattice
12
lattice deformation
12
lattice
9
electron transport
8
traveling soliton
8
electron
7
electron capture
4
capture transport
4
transport mediated
4
mediated lattice
4

Similar Publications

Noncollinear Magnetic Configurations in Frustrated Magnets.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.

View Article and Find Full Text PDF

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method.

View Article and Find Full Text PDF

We demonstrate that fundamental nonlinear localized modes can exist in the Chen-Lee-Liu equation modified by several parity-time (PT) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear PT-symmetric phases.

View Article and Find Full Text PDF

In this work, we use the ansatz transformation functions to investigate different analytical rational solutions by symbolic computation. For the (2+1)-dimensional Calogero-Bogoyavlenskii Schiff (CBS) model, we derive a variety of rational solutions, such as homoclinic breather solutions (HBs), M-shaped rational solutions (MSRs), periodic cross-rationals (PCRs), multi-wave solutions (MWs), and kink cross-rational solutions (KCRs). Their dynamic is shown in figures by selecting appropriate values for the pertinent parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!