Crossover from fractal capillary fingering to compact flow: The effect of stable viscosity ratios.

Phys Rev E Stat Nonlin Soft Matter Phys

U.S. DOE, National Energy Technology Laboratory, Morgantown, West Virginia 26507-0880, USA.

Published: October 2007

Using a standard pore-level model, which includes both viscous and capillary forces, we have studied the injection of a viscous, nonwetting fluid into a two-dimensional porous medium saturated with a less viscous, wetting fluid, i.e., drainage with favorable viscosity ratios, M> or =1 . We have observed a crossover from fractal capillary fingering to standard compact flow at a characteristic time, which decreases with increased capillary number and/or viscosity ratio. We have tested an earlier prediction for the dependence of this crossover upon viscosity ratio and capillary number using our data for a wide-but-physical range of capillary numbers and viscosity ratios. We find good agreement between the predicted behavior and our results from pore-level modeling. Furthermore, we show that this agreement is not affected by changes in the random distribution of pore throat radii or by changes in the coordination number, suggesting that the prediction is universal, i.e., valid for any porous medium structure, as expected from the general nature of the derivation of the prediction. Furthermore, this agreement indicates that the prediction correctly accounts for dependence of the flow upon capillary number and viscosity ratios, thereby enabling predictions for interfacial advance and width as well as saturation and fractional flow profiles. Also this agreement supports the validity of the general theoretical development lending credence to the three-dimensional predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.76.046304DOI Listing

Publication Analysis

Top Keywords

viscosity ratios
16
capillary number
12
crossover fractal
8
fractal capillary
8
capillary fingering
8
compact flow
8
porous medium
8
viscosity ratio
8
capillary
7
viscosity
6

Similar Publications

In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared.

View Article and Find Full Text PDF

To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.

View Article and Find Full Text PDF

Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging.

Natl Sci Rev

February 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.

View Article and Find Full Text PDF

Enhanced physicochemical, rheological and antioxidant properties of highly succinylated succinoglycan exopolysaccharides obtained through succinic anhydride esterification reaction.

Int J Biol Macromol

January 2025

Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. Electronic address:

Highly succinylated succinoglycan (HS-SG) was prepared by reacting succinic anhydride with succinoglycan (SG) exopolysaccharide isolated from Sinorhizobium meliloti. The rheological, physicochemical properties, and antioxidant effects of HS-SG were evaluated in comparison with SG. NMR and FTIR analyses confirmed that HS-SG retained the characteristic glycosidic structure of SG while showing a relative increase in succinyl functional groups.

View Article and Find Full Text PDF

Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!