Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modular structure is ubiquitous among complex networks. We note that most such systems are subject to multiple structural and functional constraints, e.g., minimizing the average path length and the total number of links, while maximizing robustness against perturbations in node activity. We show that the optimal networks satisfying these three constraints are characterized by the existence of multiple subnetworks (modules) sparsely connected to each other. In addition, these modules have distinct hubs, resulting in an overall heterogeneous degree distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.76.045103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!