Superlattices of gold nanoparticles have been produced at an air/solution interface under a highly acidic condition. The nanoparticle surface is protected by N-acetylglutathione (NAG). During the course of the superlattice formation, size growth of nanoparticles was observed: The superlattices were composed of nanoparticles of 6.6 nm in core diameter, whereas the as-prepared nanoparticles had the core diameter of 1.4 nm. The growth kinetics was pursued by the time evolution of the UV-vis absorption spectra for the sample solution. The change in the absorption spectral profiles was so small that we conducted principal-component analysis (PCA), which is known as a chemometric technique to resolve (or extract) spectra of minute chemical species submerged in the original spectra. Scanning transmission electron microscopy (STEM) corroborated the PCA results, yielding a successful explanation of the growth scheme of the NAG-protected gold nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la701976v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!