Ion conduction and polymer dynamics of poly(2-vinylpyridine)-lithium perchlorate mixtures.

J Phys Chem B

Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: December 2007

Ion conduction and polymer dynamics of homogeneous mixtures of poly(2-vinylpyridine) (P2VPy) with 0.1 to 10 mol % lithium perchlorate (LiClO(4)) were investigated using broadband dielectric spectroscopy. Interpretation of the relaxation behavior was assisted by findings from differential scanning calorimetry, Fourier transform infrared spectroscopy, dynamic mechanical analysis, and wide-angle and small-angle X-ray scattering experiments. Five dielectric relaxations were observed: a local beta-process in the glassy state, a segmental relaxation, a slow segmental process, an ion-mode relaxation, and electrode polarization. The local P2VPy beta-relaxation was strongly suppressed with increasing LiClO(4) content arising from the formation of transient crosslinks, which lead to a subsequent decrease in the number of free pyridine groups and/or a reduction in the local free volume in the presence of LiClO(4). Ion conduction at low LiClO(4) concentrations (<10 mol %) is governed by the diffusion of anions through the matrix, which is strongly coupled with the segmental relaxation. At relatively high LiClO(4) concentration (10 mol %), partial decoupling between ion motion and the segmental relaxation was observed, leading to increased conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0734068DOI Listing

Publication Analysis

Top Keywords

ion conduction
12
conduction polymer
8
polymer dynamics
8
dynamics poly2-vinylpyridine-lithium
4
poly2-vinylpyridine-lithium perchlorate
4
perchlorate mixtures
4
mixtures ion
4
dynamics homogeneous
4
homogeneous mixtures
4
mixtures poly2-vinylpyridine
4

Similar Publications

Ionomeric Nanofibers: A Versatile Platform for Advanced Functional Materials.

Polymers (Basel)

December 2024

Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan.

The one-dimensional nanomaterials known as nanofibers have remarkable qualities, such as large surface areas, adjustable porosity, and superior mechanical strength. Ionomers, types of polymers, have ionic functional groups that give them special properties, including high mechanical strength, water absorption capacity, and ionic conductivity. Integrating ionomers and nanofibers with diverse materials and advanced methodologies has been shown to improve the mechanical strength, processing capacity, and multifunctional attributes of ionomeric nanofibers.

View Article and Find Full Text PDF

Interface Engineering of Styrenic Polymer Grafted Porous Micro-Silicon/Polyaniline Composite for Enhanced Lithium Storage Anode Materials.

Polymers (Basel)

December 2024

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.

Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.

View Article and Find Full Text PDF

Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.

View Article and Find Full Text PDF

Identification and Analysis of the Plasma Membrane H-ATPase Gene Family in Cotton and Its Roles in Response to Salt Stress.

Plants (Basel)

December 2024

Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China.

Plant plasma membrane (PM) H-ATPase functions as a proton-motive force by exporting cellular protons to establish a transmembrane chemical gradient of H ions and an accompanying electrical gradient. These gradients are crucial for plant growth and development and for plant responses to abiotic and biotic stresses. In this study, a comprehensive identification of the PM H-ATPase gene family was conducted across four cotton species.

View Article and Find Full Text PDF

Anti-Epileptic Activity of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model.

Pharmaceuticals (Basel)

November 2024

Discipline of Pharmacology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania.

: Ongoing challenges in epilepsy therapy warrant research on alternative treatments that offer improved efficacy and reduced side effects. Designed to enhance mitochondrial targeting and increase bioavailability, mitocurcumin (MitoCur) was evaluated for the first time as an antiepileptic agent, with curcumin (Cur) and sodium valproate (VPA), a standard antiepileptic drug, included for comparison. This study investigated the effects on seizure onset, severity, and progression in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures and measured the concentrations of the compounds in brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!