Double ester prodrugs of FR900098 display enhanced in-vitro antimalarial activity.

Arch Pharm (Weinheim)

Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Giessen und Marburg GmbH, Giessen, Germany.

Published: December 2007

Fosmidomycin and FR900098 are inhibitors of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; IspC), a key enzyme of the mevalonate-independent isoprenoid biosynthesis pathway. We have determined the in-vitro antimalarial activity of two double ester prodrugs 2, 3 in direct comparison with the unmodified FR900098 1 against intraerythrocytic forms of Plasmodium falciparum. Temporarily masking the polar properties of the phosphonate moiety of the DXR inhibitor FR900098 1 enhanced not only its oral bioavailability but also the intrinsic activity of this series against the parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.200700069DOI Listing

Publication Analysis

Top Keywords

double ester
8
ester prodrugs
8
in-vitro antimalarial
8
antimalarial activity
8
fr900098
4
prodrugs fr900098
4
fr900098 display
4
display enhanced
4
enhanced in-vitro
4
activity fosmidomycin
4

Similar Publications

Gelatin-Based Adhesive Hydrogels with Self-Healing, Injectable and Temperature-Triggered Detachable Properties.

Macromol Biosci

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.

Adhesive hydrogels are emerging as attractive functional materials for various fields, such as tissue engineering, wound healing, E-skins, etc. However, the removal of adhesive hydrogels from covered area may be painful and cause a secondary damage. In the current study, gelatin-based hydrogels are prepared by cross-linking with tannic acid and 4-formylphenyl boronic acid, through simultaneous dynamic covalent boronic ester and imine bond formations.

View Article and Find Full Text PDF

TiCT/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection.

J Hazard Mater

January 2025

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).

View Article and Find Full Text PDF

In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!