Stratospheric ozone attenuates harmful ultraviolet radiation and protects the Earth's biosphere. Ozone is also of fundamental importance for the chemistry of the lowermost part of the atmosphere, the troposphere. At ground level, ozone is an important by-product of anthropogenic pollution, damaging forests and crops, and negatively affecting human health. Ozone is critical to the chemical and thermal balance of the troposphere because, via the formation of hydroxyl radicals, it controls the capacity of tropospheric air to oxidize and remove other pollutants. Moreover, ozone is an important greenhouse gas, particularly in the upper troposphere. Although photochemistry in the lower troposphere is the major source of tropospheric ozone, the stratosphere-troposphere transport of ozone is important to the overall climatology, budget and long-term trends of tropospheric ozone. Stratospheric intrusion events, however, are still poorly understood. Here we introduce the use of modern windprofiler radars to assist in such transport investigations. By hourly monitoring the radar-derived tropopause height in combination with a series of frequent ozonesonde balloon launches, we find numerous intrusions of ozone from the stratosphere into the troposphere in southeastern Canada. On some occasions, ozone is dispersed at altitudes of two to four kilometres, but on other occasions it reaches the ground, where it can dominate the ozone density variability. We observe rapid changes in radar tropopause height immediately preceding these intrusion events. Such changes therefore serve as a valuable diagnostic for the occurrence of ozone intrusion events. Our studies emphasize the impact that stratospheric ozone can have on tropospheric ozone, and show that windprofiler data can be used to infer the possibility of ozone intrusions, as well as better represent tropopause motions in association with stratosphere-troposphere transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06312 | DOI Listing |
Environ Health (Wash)
January 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM) and ozone (O) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems.
View Article and Find Full Text PDFSci Total Environ
January 2025
SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Science, Peking University, Beijing 100871, China.
Previous research has revealed that, during the late afternoon, the ozone (O3) concentration tends to elevate at the northern perimeter of Mount Everest (5200 m above sea level). This increase is attributed to the natural gradient of rising O3 concentration with height, exacerbated by the corresponding downstream mountain winds. Our recent field observations corroborate this finding, showing a consistent increase in O3 concentrations by approximately 13.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
2Department of Chemistry, Texas A&M University, College Station, Texas, USA; email:
Recent studies on ozone photodissociation in the Hartley and Huggins bands have provided new insights into the dissociation dynamics and product state distributions. A Λ-doublet propensity in the photodissociation has been identified through experiment and theory as the origin of the oscillatory O(a1Δ) rotational distributions and provides a promising diagnostic for determining the relative contributions of 3' and 3″ states in Huggins band spin-forbidden processes. Recent experiments on spin-forbidden dissociation have provided detailed information about the vibrational and rotational distributions of the O products and the branching ratios between the O electronic states, serving as a motivation for high-level theory.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland.
Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!