Quantum information: reality check.

Nature

Published: November 2007

Download full-text PDF

Source
http://dx.doi.org/10.1038/450175aDOI Listing

Publication Analysis

Top Keywords

quantum reality
4
reality check
4
quantum
1
check
1

Similar Publications

The study investigates the effectiveness of immersive virtual reality (VR) as a nonpharmaceutical approach to manage postoperative pain in patients following thoracoscopic surgery. In this single-center, triple-arm pilot randomized controlled trial (RCT), 61 postsurgical patients with a postoperative pain numerical rating scale (NRS) score ≥4 after receiving standard analgesia were included and assigned to either a quantum clinics-VR (QTC-VR) group, a Placebo-VR group, or a control group. The QTC-VR group engaged in a daily 10-minute interactive pain relief 3D-VR program, while the Placebo-VR group watched a daily 10-minute relaxation-based 2D film through VR headsets for three days following surgery.

View Article and Find Full Text PDF

Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.

View Article and Find Full Text PDF

The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.

View Article and Find Full Text PDF

Scalable InGaN nanowire µ-LEDs: paving the way for next-generation display technology.

Natl Sci Rev

January 2025

Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.

Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!