Improving pairwise sequence alignment between distantly related proteins.

Methods Mol Biol

Department of Chemistry, Center for Biotechnology, Temple University, USA.

Published: March 2008

Sequence alignment between remotely related proteins has been one of the more difficult problems in structural biology. Improvements have been achieved by incorporating information that enhances the diversity of the substitution matrices. NdPASA is a web-based server that optimizes sequence alignments between proteins sharing low percentages of sequence identity. The program integrates structure information of the template sequence into a global alignment algorithm by employing amino acids' neighbor-dependent propensities for secondary structure as unique parameters for alignment. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. The server is designed to aid homologous protein structure modeling. It is most effective when the structure of the template sequence is known. NdPASA can be accessed online at www.fenglab.org/bioserver.html.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-514-5_16DOI Listing

Publication Analysis

Top Keywords

structure template
12
template sequence
12
sequence
8
sequence alignment
8
secondary structure
8
residue pair
8
alignment
5
structure
5
improving pairwise
4
pairwise sequence
4

Similar Publications

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Vertical flow immunoassay for multiplex mycotoxins based on photonic nitrocellulose and SERS nanotags.

Food Chem X

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Recent Advances in the Design and Application of Asymmetric Carbon-Based Materials.

Small Methods

January 2025

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.

Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.

View Article and Find Full Text PDF

Three new pyridine derivatives, irpelactedines A-C (1-3), and a new furan derivative, irpelactedine D (5), along with two structurally related known compounds, irpexidine A (4) and 5-carboxy-2-furanpropanoic acid (6), were isolated from the medicinal fungus Irpex lacteus SY1002. Their structures were elucidated through NMR and mass spectral analyses, combined with density functional theory calculations of ECD data. Evaluation of angiotensin-converting enzyme (ACE) inhibitory activity revealed that compounds 1 and 3 displayed moderate inhibition, with IC50 values of 31.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!