Serotonin (5-HT) is crucial to normal reflex vagal modulation of heart rate (HR). Reduced baroreflex sensitivity [spontaneous baroreflex sensitivity (sBRS)] and HR variability (HRV) reflect impaired neural, particularly vagal, control of HR and are independently associated with depression. In conscious, telemetered Flinders-Sensitive Line (FSL) rats, a well-validated animal model of depression, we tested the hypothesis that cardiovascular regulatory abnormalities are present and associated with deficient serotonergic control of reflex cardiovagal function. In FSL rats and control Flinders-Resistant (FRL) and Sprague-Dawley (SD) rat strains, diurnal measurements of HR, arterial pressure (AP), activity, sBRS, and HRV were made. All strains had normal and similar diurnal variations in HR, AP, and activity. In FRL rats, HR was elevated, contributing to the reduced HRV and sBRS in this strain. In FSL rats, sBRS and high-frequency power HRV were reduced during the night, indicating reduced reflex cardiovagal activity. The ratio of low- to high-frequency bands of HRV was increased in FSL rats, suggesting a relative predominance of cardiac sympathetic and/or reflex activity compared with FRL and SD rats. These data show that conscious FSL rats have cardiovascular regulatory abnormalities similar to depressed humans. Acute changes in HR, AP, temperature, and sBRS in response to 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT(1A), 5-HT(1B), and 5-HT(7) receptor agonist, were also determined. In FSL rats, despite inducing an exaggerated hypothermic effect, 8-hydroxy-2-(di-n-propylamino)tetralin did not decrease HR and AP or improve sBRS, suggesting impaired serotonergic neural control of cardiovagal activity. These data suggest that impaired serotonergic control of cardiac reflex function could be one mechanism linking reduced sBRS to increased cardiac risk in depression.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01009.2007DOI Listing

Publication Analysis

Top Keywords

fsl rats
24
impaired serotonergic
12
baroreflex sensitivity
12
heart rate
8
reduced baroreflex
8
animal model
8
model depression
8
rats
8
cardiovascular regulatory
8
regulatory abnormalities
8

Similar Publications

An Updated Bio-Behavioral Profile of the Flinders Sensitive Line Rat: Reviewing the Findings of the Past Decade.

Pharmacol Res Perspect

February 2025

Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.

The Flinders sensitive line (FSL) rat is an accepted rodent model for depression that presents with strong face, construct, and predictive validity, thereby making it suitable to investigate novel antidepressant mechanisms. Despite the translatability of this model, available literature on this model has not been reviewed for more than ten years. The PubMed, ScienceDirect and Web of Science databases were searched for relevant articles between 2013 and 2024, with keywords relating to the Flinders line rat, and all findings relevant to treatment naïve animals, included.

View Article and Find Full Text PDF

Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression.

Pharmacol Res

December 2024

Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:

Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.

View Article and Find Full Text PDF

Passively administered fluoxetine reaches the juvenile brain of FSL rats and reduces antioxidant defences, without altering serotonin turnover.

BMC Pharmacol Toxicol

August 2024

Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Hoffman Street, Potchefstroom, 2531, South Africa.

Background: Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.

Methods: Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04.

View Article and Find Full Text PDF

Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function.

Int J Mol Sci

July 2024

Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models.

View Article and Find Full Text PDF

A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement.

Biomed Eng Online

February 2024

Grupo GITA, Facultad de Minas, Universidad Nacional de Colombia, Carrera 80#65-223, 050001, Medellín, Colombia.

Article Synopsis
  • Flash glucose monitoring systems like the FreeStyle Libre (FSL) are popular for tracking glucose levels in diabetes, and a new modified system (c-rtCGM) allows for remote monitoring and trend analysis.
  • This study aimed to compare the accuracy and agreement of the FSL sensor with the c-rtCGM by analyzing data from diabetic rats and assessing their connectivity every 5 minutes.
  • Results showed that the c-rtCGM had a Median absolute relative difference (Median ARD) of 6.58% compared to the FSL, improving to 2.41% with more frequent calibration, while also demonstrating 95% connectivity for data reception.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!