The role of glycogen synthase kinase-3beta in schizophrenia.

Drug News Perspect

Department of CNS Research, Boehringer-Ingelheim Pharma GmbH & Co., Biberach, Germany.

Published: September 2007

Glycogen synthase kinase (GSK)-3beta is recognized as a ubiquitous multifunctional enzyme involved in the modulation of many aspects of neuronal function. Inhibitory control of GSK-3beta has been identified to be crucial for the phosphoinositide 3'-kinase (PI3K)-protein kinase B (Akt)-mediated cell survival. Several lines of evidence converge in implicating abnormal GSK-3beta activity in the pathogenesis of schizophrenia. Preclinical evidence showing that both typical and atypical antipsychotics can indirectly inhibit the activity of GSK-3beta, has pointed to GSK-3beta as a possible therapeutic target for schizophrenia. It is well known that GSK-3beta can be indirectly inhibited via regulation of several intracellular signaling cascades, including the canonical Wnt, Reelin and tyrosine kinase receptor (Trk)-PI3K-Akt. Recently, direct inhibition of GSK-3beta has emerged as a possible option in the pharmacotherapy of several neuropsychiatric disorders. There is, however, a number of issues that need to be considered regarding therapeutic utility of GSK-3beta inhibitors. This article reviews the evidence supporting the possible role of aberrant GSK-3beta in the pathogenesis of schizophrenia and thus suggesting GSK-3beta to be a potential therapeutic target for this disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1358/dnp.2007.20.7.1149632DOI Listing

Publication Analysis

Top Keywords

gsk-3beta
10
glycogen synthase
8
pathogenesis schizophrenia
8
therapeutic target
8
role glycogen
4
synthase kinase-3beta
4
schizophrenia
4
kinase-3beta schizophrenia
4
schizophrenia glycogen
4
synthase kinase
4

Similar Publications

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

The treatment of metastatic melanoma has long posed a complex challenge within clinical practice. Previous studies have found that EMT transcription factors are essential in the development of various cancers through their induction of EMT. Here, we demonstrate that Snail2 expression is dramatically increased in melanoma and is associated with an adverse prognosis.

View Article and Find Full Text PDF

Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!