Phosphate homeostasis is maintained by a counterbalance between efflux from the kidney and influx from intestine and bone. FGF23 is a bone-derived phosphaturic hormone that acts on the kidney to increase phosphate excretion and suppress biosynthesis of vitamin D. FGF23 signals with highest efficacy through several FGF receptors (FGFRs) bound by the transmembrane protein Klotho as a coreceptor. Since most tissues express FGFR, expression of Klotho determines FGF23 target organs. Here we identify the parathyroid as a target organ for FGF23 in rats. We show that the parathyroid gland expressed Klotho and 2 FGFRs. The administration of recombinant FGF23 led to an increase in parathyroid Klotho levels. In addition, FGF23 activated the MAPK pathway in the parathyroid through ERK1/2 phosphorylation and increased early growth response 1 mRNA levels. Using both rats and in vitro rat parathyroid cultures, we show that FGF23 suppressed both parathyroid hormone (PTH) secretion and PTH gene expression. The FGF23-induced decrease in PTH secretion was prevented by a MAPK inhibitor. These data indicate that FGF23 acts directly on the parathyroid through the MAPK pathway to decrease serum PTH. This bone-parathyroid endocrine axis adds a new dimension to the understanding of mineral homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2066196PMC
http://dx.doi.org/10.1172/JCI32409DOI Listing

Publication Analysis

Top Keywords

fgf23
9
parathyroid
8
parathyroid target
8
target organ
8
organ fgf23
8
fgf23 rats
8
mapk pathway
8
pth secretion
8
rats phosphate
4
phosphate homeostasis
4

Similar Publications

Background: X-linked hypophosphatemia (XLH) is a rare disorder characterized by elevated levels of fibroblast growth factor 23 (FGF-23), leading to hypophosphatemia and complications in diagnosis due to its clinical heterogeneity. Metabolomic analysis, which examines metabolites as the final products of cellular processes, is a powerful tool for identifying in vivo biochemical changes, serving as biomarkers of pathological abnormalities, and revealing previously uncharted metabolic pathways.

Methods: A multicenter cross-sectional case-control study of adult patients diagnosed with XLH was conducted.

View Article and Find Full Text PDF

Tertiary hyperparathyroidism is characterized by hypercalcemia resulting from autonomous parathyroid hormone production and usually occurs after a prolonged period of secondary hyperparathyroidism. This condition can be a complication of X-linked hypophosphatemia (XLH), a rare genetic disease characterized by renal phosphate loss and consequent hypophosphatemia. Parathyroidectomy is considered the first-line therapy but surgical intervention can be complicated by hungry bone syndrome.

View Article and Find Full Text PDF

Background: As a state of metabolic and nutritional derangements, protein-energy wasting (PEW) is highly prevalent and associated with increased morbidity and mortality in hemodialysis patients. Fibroblast growth factor-23 (FGF-23) and Klotho have been proven to contribute to chronic kidney disease-mineral and bone disorder (CKD-MBD) in patients undergoing hemodialysis. Previous evidence suggested that FGF-23 and Klotho may also contribute to the malnutritional status among these patients; however, the inter-relationship between the FGF-23-Klotho axis and PEW remains unclear.

View Article and Find Full Text PDF

Dynamic single cell transcriptomics defines kidney FGF23/KL bioactivity and novel segment-specific inflammatory targets.

Kidney Int

January 2025

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202; Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA, 46202. Electronic address:

Fibroblast growth factor 23 (FGF23) via its coreceptor αKlotho (KL) provides critical control of phosphate metabolism, which is altered in both rare and very common syndromes. However, the spatial-temporal mechanisms dictating kidney FGF23 functions remain poorly understood. Thus, developing approaches to modify specific FGF23-dictated pathways has proven problematic.

View Article and Find Full Text PDF

Background: The progression of diabetic kidney disease (DKD) affects the patient's kidney glomeruli and tubules, whose normal functioning is essential for maintaining normal calcium (Ca) and phosphorus (P) metabolism in the body. The risk of developing osteoporosis (OP) in patients with DKD increases with the aggravation of the disease, including a higher risk of fractures, which not only affects the quality of life of patients but also increases the risk of death.

Aim: To analyze the risk factors for the development of OP in patients with DKD and their correlation with Ca-P metabolic indices, fibroblast growth factor 23 (FGF23), and Klotho.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!