An unexpected biochemical strategy for chain initiation is described for the loading module of the polyketide synthase of curacin A, an anticancer lead derived from the marine cyanobacterium Lyngbya majuscula. A central GCN5-related N-acetyltransferase (GNAT) domain bears bifunctional decarboxylase/S-acetyltransferase activity, both unprecedented for the GNAT superfamily. A CurA loading tridomain, consisting of an adaptor domain, the GNAT domain, and an acyl carrier protein, was assessed biochemically, revealing that a domain showing homology to GNAT (GNAT(L)) catalyzes (i) decarboxylation of malonyl-coenzyme A (malonyl-CoA) to acetyl-CoA and (ii) direct S-acetyl transfer from acetyl-CoA to load an adjacent acyl carrier protein domain (ACP(L)). Moreover, the N-terminal adapter domain was shown to facilitate acetyl-group transfer. Crystal structures of GNAT(L) were solved at 1.95 angstroms (ligand-free form) and 2.75 angstroms (acyl-CoA complex), showing distinct substrate tunnels for acyl-CoA and holo-ACP(L) binding. Modeling and site-directed mutagenesis experiments demonstrated that histidine-389 and threonine-355, at the convergence of the CoA and ACP tunnels, participate in malonyl-CoA decarboxylation but not in acetyl-group transfer. Decarboxylation precedes acetyl-group transfer, leading to acetyl-ACP(L) as the key curacin A starter unit.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1148790DOI Listing

Publication Analysis

Top Keywords

acetyl-group transfer
12
chain initiation
8
gnat domain
8
acyl carrier
8
carrier protein
8
domain
6
gnat-like strategy
4
strategy polyketide
4
polyketide chain
4
initiation unexpected
4

Similar Publications

Anti-CRISPR proteins in Gluconobacter oxydans inactivate FnCas12a by acetylation.

Int J Biol Macromol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Gluconobacter oxydans is an important chassis cell for one-step production of vitamin C. Previous studies reported that CRISPR/Cas12a is naturally inactivated in G. oxydans, but the specific mechanism remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • This article discusses the synthesis and structural characterization of chiral Tb(III) and Eu(III) complexes using two different ligands: an enantiopure diamine-based ligand and various hydroxycoumarin ligands.
  • Different substituents on the coumarin ligands lead to varying efficiencies in capturing light, which affects the luminescence of the Tb(III) and Eu(III) complexes.
  • The study includes theoretical calculations that explain the energy transfer processes in the complexes, alongside insights into how the coumarin ligands influence the chiroptical properties of the Tb(III) complexes.
View Article and Find Full Text PDF

New insight into linear substituents influencing electrooxidation treatment of sulfonamide antibiotics: Linking kinetics, pathways, toxicity, and active species with density functional theory.

Environ Res

January 2025

Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Water Sciences, School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, China.

Linear substituents, despite their simpler structures compared to heterocyclic ones, exhibit distinct chemical behaviors. Using sulfacetamide (SAM) and sulfaguanidine (SGD) as model compounds, we assessed the impact of these substituents on degradation efficiency, active species identification, reaction pathways, and intermediate toxicity during electrooxidation in water. Through density functional theory, we elucidated the mechanisms, focusing on electronic structural changes and interactions with active species.

View Article and Find Full Text PDF

Background: Polyploid giant cancer cells (PGCCs) have properties of cancer stem cells (CSCs). PGCCs with daughter cells (PDCs) undergo epithelial-mesenchymal transition and show enhanced cellular plasticity. This study aimed to elucidate the mechanisms underlying the osteo/chondrogenic-like differentiation of PDCs, which may be exploited therapeutically by transdifferentiation into post-mitotic and functional cells.

View Article and Find Full Text PDF

KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!