A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA microarray-based ecotoxicological biomarker discovery in a small fish model species. | LitMetric

DNA microarray-based ecotoxicological biomarker discovery in a small fish model species.

Environ Toxicol Chem

Ecological Exposure Research Division, National Exposure Research Lab, US Environmental Protection Agency, Cincinnati, Ohio 45268, USA.

Published: March 2008

As potential biomarkers, gene classifiers are gene expression signatures or patterns capable of distinguishing biological samples belonging to different classes or conditions. This is the second of two papers on profiling gene expression in zebrafish (Danio rerio) treated with endocrine-disrupting chemicals of different modes of action, with a focus on comparative analysis of microarray data for gene classifier discovery. Various combinations of gene feature selection/class prediction algorithms were evaluated, with the use of microarray data organized by a chemical stressor or tissue type, for their accuracy in determining the class memberships of independent test samples. Two-way clustering of gene classifiers and treatment conditions offered another alternative to assess the performance of these potential biomarkers. Both gene feature selection methods and class prediction algorithms were shown to be important in identifying successful gene classifiers. The genetic algorithm and support vector machine yielded classifiers with the best prediction accuracy, regardless of sample size, nature of class prediction, and data complexity. A chemical stressor significantly altering the expression of a greater number of genes tended to generate gene classifiers with better performance. All combinations of gene feature selection/class prediction algorithms performed similarly well with data of high signal to noise ratio. Gene classifier discovery and application on the basis of individual sampling and sample data pooling, respectively, were found to enhance class predictions. Gene expression profiles of the top gene classifiers, identified from both microarray and quantitative polymerase chain reaction assays, displayed greater similarity between fadrozole and 17beta-trenbolone than either one to 17alpha-ethinylestradiol. These gene classifiers could serve as potential biomarkers of exposure to specific classes of endocrine disruptors.

Download full-text PDF

Source
http://dx.doi.org/10.1897/07-192.1DOI Listing

Publication Analysis

Top Keywords

gene classifiers
24
gene
14
potential biomarkers
12
gene expression
12
gene feature
12
prediction algorithms
12
biomarkers gene
8
microarray data
8
gene classifier
8
classifier discovery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!