Screening of patients with familial breast cancer from St. Petersburg for BRCA1 gene mutations resulted in identification of three mutations (414del3, 276delA, and A622V) and two polymorphisms (P871L and S1436S). Mutations 4146del3 and 276delA are novel, never previously described elsewhere. Deletion 2761delA produces a reading frame shift, premature protein synthesis termination and can cause predisposition for breast cancer. Deletion 414de13 does not cause a frame shift, but can result both in the disappearance of amino acid residue (D1343del) in the BRCA1 protein and in alteration of folding of the protein, entailing loss of its functional activity. Two variants of nucleotide sequence observed in the number of patients were classified as DNA polymorphisms (P871L and S1436S) rather than mutations as they were not tightly associated with the increased risk of breast cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

breast cancer
16
brca1 gene
8
gene mutations
8
polymorphisms p871l
8
p871l s1436s
8
s1436s mutations
8
frame shift
8
mutations
5
[novel brca1
4
breast
4

Similar Publications

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.

View Article and Find Full Text PDF

FDA Approves Inavolisib Combo for PIK3CA-Mutated, HR+ Breast Cancer.

Curr Med Chem

January 2025

Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!