Evaluation of methanogenic strains and their ability to endure aeration and water stress.

Curr Microbiol

Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan.

Published: March 2008

During periods of drainage, both water stress and oxygen can cause damage to indigenous methanogens. In the present study, we evaluated the tolerance of seven methanogenic strains (Methanobrevibacter arboriphilicus, Methanobacterium formicicum, Methanococcus vannielii, Methanospirillum hungatei, Methanoculleus olentangyi, Methanoplanus limicola, and Methanosarcina mazei) to long-term exposure to air/nitrogen and drying. We found that these methanogenic strains except for M. limicola and M. olentangyi in pre-dried cells offered more tenacious resistance to desiccation and oxygen exposure than those in enriched liquid cultures. In the case of M. formicicum, the liquid culture of this strain could remain viable when mixed well with fresh or sterile soil, but not when cultured without soil, or with agar slurry. These results suggest that indigenous methanogens localize within soil compartments to protect themselves from the damage caused by gradual drying under an oxic atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-007-9059-7DOI Listing

Publication Analysis

Top Keywords

methanogenic strains
12
water stress
8
indigenous methanogens
8
evaluation methanogenic
4
strains ability
4
ability endure
4
endure aeration
4
aeration water
4
stress periods
4
periods drainage
4

Similar Publications

Nitrite hazard is an important food safety issue in the production process of Chinese Northeastern sauerkraut, but this nitrite can be eliminated through microbial enzymatic degradation and acidic degradation as fermentation progresses. Therefore, analyzing the microbial diversity that dominates nitrite degradation in Chinese Northeastern sauerkraut can provide a reference for its safe production. In this study, based on the dynamic monitoring of nitrite concentration, pH, and the abundance of nitrite reductase genes ( and ) and the application of high-throughput sequencing technology and various statistical analysis methods, the microbial groups associated with nitrite enzymatic degradation and acidic degradation in Northeast sauerkraut fermentation broth were analyzed.

View Article and Find Full Text PDF

One-step transformation of CO to methane by Escherichia coli with a synthetic biomethanation module.

Biochem Biophys Res Commun

February 2025

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:

The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.

View Article and Find Full Text PDF

Aim: The aim of this study is to increase the diversity of culturable halophilic archaea by comparing various isolation conditions and to explore the application of halophilic archaea for enzyme-producing activities and antimicrobial properties.

Methods And Results: We systematically compared the isolation performance of various archaeal and bacterial media by isolating halophilic archaea from the Da Qaidam Salt Lake, a magnesium sulfate subtype hypersaline lake on the Qinghai-Tibet Plateau, China, using multiple enrichment culture and gradient dilution conditions. A total of 490 strains of halophilic archaea were isolated, which belonged to five families and 11 genera within the order Halobacteriales of the class Halobacteria of the phylum Euryarchaeota.

View Article and Find Full Text PDF

Isolation of a strain from an Eastern Gray Kangaroo.

Front Microbiol

December 2024

Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.

Methanogenic archaea are a group of microorganisms found in the gastrointestinal tract of various herbivores and humans; however, the quantity (intensity) of methane emissions during feed digestion varies. Macropodids, such as the Eastern Gray Kangaroo (), are considered to be low methane-emitting animals, but their gut methanogenic archaea remain poorly characterized. Characterizing methanogens from animals with low methane emissions offers the potential to develop strategies and interventions that reduce methane emissions from livestock.

View Article and Find Full Text PDF

Four novel halophilic archaeal strains CGA53, CG83, FCH27, and SEDH24 were isolated from a soda lake and two saline lakes in China, respectively. Strain CGA53 showed the highest 16S rRNA gene similarity (92.6%) to Salinilacihabitans rarus AD-4, and the other three strains were found to be related to Halalkalicoccus species with similarities of 97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!