The time-dependent effects of ethanol (EtOH) intoxication on GABA(A) receptor (GABA(A)R) composition and function were studied in rats. A cross-linking assay and Western blot analysis of microdissected CA1 area of hippocampal slices obtained 1 h after EtOH intoxication (5 g/kg, gavage), revealed decreases in the cell-surface fraction of alpha4 and delta, but not alpha1, alpha5, or gamma2 GABA(A)R subunits, without changes in their total content. This was accompanied (in CA1 neuron recordings) by decreased magnitude of the picrotoxin-sensitive tonic current (I(tonic)), but not miniature IPSCs (mIPSCs), and by reduced enhancement of I(tonic) by EtOH, but not by diazepam. By 48 h after EtOH dosing, cell-surface alpha4 (80%) and gamma2 (82%) subunit content increased, and cell-surface alpha1 (-50%) and delta (-79%) and overall content were decreased. This was paralleled by faster decay of mIPSCs, decreased diazepam enhancement of both mIPSCs and I(tonic), and paradoxically increased mIPSC responsiveness to EtOH (10-100 mm). Sensitivity to isoflurane- or diazepam-induced loss of righting reflex was decreased at 12 and 24 h after EtOH intoxication, respectively, suggesting functional GABA(A)R tolerance. The plastic GABA(A)R changes were gradually and fully reversible by 2 weeks after single EtOH dosing, but unexplainably persisted long after withdrawal from chronic intermittent ethanol treatment, which leads to signs of alcohol dependence. Our data suggest that early tolerance to EtOH may result from excessive activation and subsequent internalization of alpha4betadelta extrasynaptic GABA(A)Rs. This leads to transcriptionally regulated increases in alpha4 and gamma2 and decreases in alpha1 subunits, with preferential insertion of the newly formed alpha4betagamma2 GABA(A)Rs at synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673253 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2786-07.2007 | DOI Listing |
bioRxiv
October 2024
Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901.
The relationship between chronic heavy drinking and post-traumatic stress disorder (PTSD) is well-documented; however, the impact of more common drinking patterns, such as a single episode leading to a blood alcohol concentration (BAC) of 0.09 g/dL (moderate intoxication), remains underexplored. Given the frequent co-occurrence of PTSD and alcohol misuse, it is essential to understand the biological and behavioral factors driving this comorbidity.
View Article and Find Full Text PDFAlcohol
November 2024
Department of Psychology, Binghamton University of the State University of New York, New York, USA. Electronic address:
A preclinical model of human adolescent binge drinking, adolescent intermittent ethanol exposure (AIE) recreates the heavy binge withdrawal consummatory patterns of adolescents and has identified the loss of basal forebrain cholinergic neurons as a pathological hallmark of this model. Cholinergic neurons of the nucleus basalis magnocellularis (NbM) that innervate the prefrontal cortex (PFC) are particularly vulnerable to alcohol related neurodegeneration. Target derived neurotrophins (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) regulate cholinergic phenotype expression and survival.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2024
Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL, 32306, USA. Electronic address:
Background: Chronic alcohol enhances oxidative stress, but the temporal response of antioxidant genes in skeletal muscle following a binge drinking episode remains unknown.
Methods: Experiment 1: C57BL/6Hsd female mice received an IP injection of saline (CON; n = 39) or ethanol (ETOH; n = 39) (5 g/kg). Gastrocnemius muscles were collected from baseline (untreated; n = 3), CON (n = 3), and ETOH (n = 3) mice every 4 h for 48 h.
J Appl Physiol (1985)
April 2024
Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States.
Chronic alcohol intoxication decreases muscle strength/function and causes mitochondrial dysfunction. Aerobic exercise training improves mitochondrial oxidative capacity and increases muscle mass and strength. Presently, the impact of chronic alcohol on aerobic exercise-induced adaptations was investigated.
View Article and Find Full Text PDFClin Exp Reprod Med
June 2024
Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!