H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes.

Am J Physiol Cell Physiol

Cardiovascular Biology Research Group, Department of Pharmacology, National University of Singapore, Singapore.

Published: January 2008

The present study was aimed to investigate the regulatory effect of protein kinase C (PKC) on intracellular Ca(2+) handling in hydrogen sulfide (H(2)S)-preconditioned cardiomyocytes and its consequent effects on ischemia challenge. Immunoblot analysis was used to assess PKC isoform translocation in the rat cardiomyocytes 20 h after NaHS (an H(2)S donor, 10(-4) M) preconditioning (SP, 30 min). Intracellular Ca(2+) was measured with a spectrofluorometric method using fura-2 ratio as an indicator. Cell length was compared before and after ischemia-reperfusion insults to indicate the extent of hypercontracture. SP motivated translocation of PKCalpha, PKCepsilon, and PKCdelta to membrane fraction but only translocation of PKCepsilon and PKCdelta was abolished by an ATP-sensitive potassium channel blocker glibenclamide. It was also found that SP significantly accelerated the decay of both electrically and caffeine-induced intracellular [Ca(2+)] transients, which were reversed by a selective PKC inhibitor chelerythrine. These data suggest that SP facilitated Ca(2+) removal via both accelerating uptake of Ca(2+) into sarcoplasmic reticulum and enhancing Ca(2+) extrusion through Na(+)/Ca(2+) exchanger in a PKC-dependent manner. Furthermore, blockade of PKC also attenuated the protective effects of SP against Ca(2+) overload during ischemia and against myocyte hypercontracture at the onset of reperfusion. We demonstrate for the first time that SP activates PKCalpha, PKCepsilon, and PKCdelta in cardiomyocytes via different signaling mechanisms. Such PKC activation, in turn, protects the heart against ischemia-reperfusion insults at least partly by ameliorating intracellular Ca(2+) handling.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00282.2007DOI Listing

Publication Analysis

Top Keywords

intracellular ca2+
12
pkcepsilon pkcdelta
12
pkc activation
8
rat cardiomyocytes
8
ca2+ handling
8
ischemia-reperfusion insults
8
pkcalpha pkcepsilon
8
ca2+
7
pkc
6
intracellular
5

Similar Publications

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

Exploring the Internal Environmental Changes of Muscle Cells and Apoptotic Phase of Mitochondria in Dry-Cured Loin Using Electrical Stimulation: Promoting the Precise Regulation of Loin Ham Quality.

J Agric Food Chem

January 2025

Guizhou Key Laboratory of New Quality Processing and Storage of Ecological Specialty Food; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.

Traditional dry-curing methods have a long cycle time and low efficiency, resulting in the inconsistent quality of dry-cured ham. By applying electrical stimulation (ES) technology in the dry-curing process, it was found that ES affected mitochondrial apoptosis by modulating the intracellular environment of muscle cells, which, in turn, enhanced the quality of dry-cured pork loin. Specifically, ES accelerated glycogen and ATP depletion, which led to a rapid decline in pH.

View Article and Find Full Text PDF

Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway.

J Adv Res

January 2025

Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:

Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.

Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium.

J Gen Physiol

March 2025

Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.

The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!