Tetradecker transition metal complexes containing double planar hexacoordinate carbons and double planar heptacoordinate borons.

J Phys Chem A

Institute of Materials Sciences and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China.

Published: December 2007

A theoretical investigation on tetradecker transition metal complexes of Cp-Fe-CB6-Fe-CB6-Fe-Cp (1) containing double planar hexacoordinate carbons and Cp-Fe-BB7-Fe-BB7-Fe-Cp (2) containing double planar heptcoordinate borons has been performed in this work at density functional theory level. [CpFe]+ monocations prove to effectively stabilize these unusual complexes, which are mainly maintained by effective d-pi coordination interactions between the partially filled Fe 3d orbitals and the delocalized pi molecular orbitals (MOs) of the four planar deckerlike ligands. The results obtained in these model computations expand the domain of ferrocene chemistry and could provide a new approach for synthesizing planar hyper-coordinate carbons and borons in transition metal complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp076006tDOI Listing

Publication Analysis

Top Keywords

double planar
16
transition metal
12
metal complexes
12
tetradecker transition
8
planar hexacoordinate
8
hexacoordinate carbons
8
planar
6
complexes
4
double
4
complexes double
4

Similar Publications

The functional units of natural photosynthetic systems control the process of converting sunlight into chemical energy. In this article, we explore a series of chemically and structurally modified bacteriochlorophyll and chlorophyll pigments through computational chemistry to evaluate their electronic spectroscopy properties. More specifically, we use multiconfigurational and time-dependent density functional theory methods, along with molecular dynamics simulations, to compute the models' energetics both in an implicit and explicit solvent environment.

View Article and Find Full Text PDF

NiFe-based materials, especially NiFe layered double hydroxides (LDHs), are recognized as the most promising non-precious metal electrocatalysts for alkaline oxygen evolution reaction (OER). However, the precisely designed distribution of active sites for enhancing activities is still significantly restricted due to the lack of reasonable modulation strategies. Herein, sulfur doped Ni/Fe gradient-distributed LDH (GD-NiFe LDH/S) is fabricated by facile air-induced strategy at room temperature.

View Article and Find Full Text PDF

Methoxyquinolone-Benzothiazole Hybrids as New Aggregation-Induced Emission Luminogens and Efficient Fluorescent Chemosensors for Cyanide Ions.

Int J Mol Sci

November 2024

Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia.

This work describes the synthesis and characterization of new quinolone-benzothiazole hybrids, the study of their aggregation-induced emission (AIE) properties, and the use of these systems as efficient fluorescent probes for cyanide ions. These conjugated derivatives are linked through a double bond favoring electronic communication, and together with their planar geometry, can strongly aggregate under solvophobic environments, leading to aggregation and exhibiting significant AIE behavior. The double bond between electroactive units is prone to nucleophilic addition reactions by cyanide ions, selectively, conducive to turning off the fluorescence properties, making this hybrid system an efficient probe for cyanide ions.

View Article and Find Full Text PDF

Impact of grain boundaries on the electronic properties and Schottky barrier height in MoS@Au heterojunctions.

Phys Chem Chem Phys

December 2024

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.

Using density functional theory (DFT) calculations we thoroughly explored the influence of grain boundaries (GBs) in monolayer MoS composed of S-polar (S5|7), Mo-polar (Mo5|7), and (4|8) edge dislocation, as well as an edge dislocation-double S vacancy complex (S4|6), and a dislocation-double S interstitial complex (S6|8), respectively, on the electronic properties of MoS and the Schottky barrier height (SBH) in MoS@Au heterojunctions. Our findings demonstrate that GBs formed by edge dislocations can significantly reduce the SBH in defect-free MoS, with the strongest effect for zigzag (4|8) GBs (-20% reduction) and the weakest for armchair (5|7) GBs (-10% reduction). In addition, a larger tilt angle in the GBs leads to a more pronounced decrease in the SBH, suggesting that the modulation of SBH in the MoS@Au heterostructure and analogous systems can be accomplished by GB engineering.

View Article and Find Full Text PDF

[C(NH)]SO: A SBBO-Like Dithionate Crystal with Large Optical Anisotropy.

Inorg Chem

December 2024

College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.

Investigating ultraviolet (UV) birefringent crystals is a focal point of research in recent years. The development of superior birefringent materials faces substantial challenges, primarily due to the need to pinpoint optimal fundamental building blocks and to perfect their geometric arrangement within the crystal lattice. By selecting a planar π-conjugated [C(NH)] group and a staggered [SO] group, we have successfully synthesized an organic-inorganic hybrid crystal, [C(NH)]SO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!