Crystal structure of human DAAM1 formin homology 2 domain.

Genes Cells

Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.

Published: November 2007

Reorganization of the actin filament is an essential process for cell motility, cell-cell attachment and intracellular transport. Formin proteins promote nucleation and elongation of the actin filament, and thus are key regulators for this process. The formin homology 2 (FH2) domain forms a head-to-tail ring-shaped dimer, and processively moves towards the barbed end. Dishevelled-associated activator of morphogenesis (DAAM) is a Rho-regulated formin implicated in neuronal development. Here, we present the crystal structure of human DAAM1 FH2 dimer at 2.8 A resolution. This is the first dimeric structure of the mammalian formin. The core structure of human DAAM1 is similar to those of mouse mDia1 and yeast Bni1p, whereas the orientations of the FH2 dimeric rings are different between human DAAM1 and yeast Bni1p, despite their similar dimer interactions. This difference supports the previous prediction that the dimer architecture of the formin is highly flexible in the actin-free state. The results of the actin assembly assays using the DAAM1 mutants demonstrated that the length of the linker connecting the N-terminal domain and the core region is crucial for the activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2007.01132.xDOI Listing

Publication Analysis

Top Keywords

human daam1
16
structure human
12
crystal structure
8
formin homology
8
actin filament
8
yeast bni1p
8
formin
6
daam1
5
human
4
daam1 formin
4

Similar Publications

The Daam1 protein regulates Wnt-induced cytoskeletal changes during vertebrate gastrulation though its full mode of action and binding partners remain unresolved. Here we identify Reversion Induced LIM domain protein (RIL) as a new interacting protein of Daam1. Interaction studies uncover binding of RIL to the C-terminal actin-nucleating portion of Daam1 in a Wnt-responsive manner.

View Article and Find Full Text PDF

Formin Binding Protein 1 (FNBP1) regulates non-canonical Wnt signaling and vertebrate gastrulation.

Dev Biol

November 2024

Department of Biology, Temple University, Philadelphia, PA, 19122, USA. Electronic address:

The Formin protein Daam1 is required for Wnt-induced cytoskeletal changes during gastrulation, though how it accomplishes this remains unresolved. Here we report the characterization of Formin Binding Protein 1 (FNBP1) as a binding partner of Daam1. The interaction of Daam1 with FNBP1 and its domains required for this interaction were delineated.

View Article and Find Full Text PDF
Article Synopsis
  • * We identified 30 significant genetic variants linked to myelination and other brain processes that help shape structural connectivity, implicating specific genes involved in neuron growth, guidance, and overall brain structure.
  • * Our findings suggest that structural connectivity is highly influenced by genetics, with connections connected to various neuropsychiatric and cognitive traits, indicating that these genetic variants could affect brain health and cognitive abilities throughout life.
View Article and Find Full Text PDF

Association Between Wnt Target Genes and Cortical Volumes in Alzheimer's Disease.

J Mol Neurosci

December 2023

Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100005, China.

The disproportionate cortical atrophy is an established biomarker for the pathophysiological process of Alzheimer's disease (AD). However, the genetic basis underlying the cortical atrophy remains poorly defined. Herein, we aim to illustrate the effect of the Wnt target genes on the cortical volumes of AD patients.

View Article and Find Full Text PDF

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies, such as trastuzumab, benefit patients with HER2-positive metastatic breast cancer; however, owing to traditional pathway activation or alternative signaling, resistance persists. Given the crucial role of the formin family in shaping the actin cytoskeleton during cancer progression, these proteins may function downstream of the HER2 signaling pathway. Our aim was to uncover the potential correlations between formins and HER2 expression using a combination of public databases, immunohistochemistry, and functional assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!