DNA nanotechnology often requires collections of oligonucleotides called "DNA free energy gap codes" that do not produce erroneous crosshybridizations in a competitive muliplexing environment. This paper addresses the question of how to design these codes to accomplish a desired amount of work within an acceptable error rate. Using a statistical thermodynamic and probabilistic model of DNA code fidelity and mathematical random coding theory methods, theoretical lower bounds on the size of DNA codes are given. More importantly, DNA code design parameters (e.g., strand number, strand length and sequence composition) needed to achieve experimental goals are identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cmb.2007.0083 | DOI Listing |
Nat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFSci Rep
January 2025
IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Applied Physics and Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.
Sodium metal batteries without pre-deposited Na (anode-free) and with a limited amount of Na metal (anode-less) have attracted increasing attention due to their competitive energy density and the high abundance of sodium. However, severe interfacial issues result in poor cycling stability and low Coulombic efficiency. Here, the lightweight interphase layers composed of intermetallic nanoparticles (Sn-Cu and Sn-Ni) are applied to improve Na plating/stripping behaviors.
View Article and Find Full Text PDFClin Nutr ESPEN
January 2025
Brigham Young University, Nutrition, Dietetics, and Food Science Department, Provo, Utah 84602. Electronic address:
Background And Aims: Sarcopenia, defined as a muscle mass loss and function, is increasingly recognized in pediatric populations, particularly in childhood obesity. Therefore, it is necessary to have measurements that can distinguish between muscle and fat mass. Methods of body composition such as Dual Energy X-ray Absorptiometry (DEXA) provide accurate assessments of body composition, but they are resource-intensive and impractical for routine monitoring in clinical or community settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!