Locality is an important and well-studied notion in comparative analysis of biological sequences. Similarly, taking into account affine gap penalties when calculating biological sequence alignments is a well-accepted technique for obtaining better alignments. When dealing with RNA, one has to take into consideration not only sequential features, but also structural features of the inspected molecule. This makes the computation more challenging, and usually prohibits the comparison only to small RNAs. In this paper we introduce two local metrics for comparing RNAs that extend the Smith-Waterman metric and its normalized version used for string comparison. We also present a global RNA alignment algorithm which handles affine gap penalties. Our global algorithm runs in O(m(2)n(1 + lg n/m)) time, while our local algorithms run in O(m(2)n(1 + lg n/m)) and O(n(2)m) time, respectively, where m
Download full-text PDF
Source
http://dx.doi.org/10.1089/cmb.2007.0062 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!