A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics for a pendant bubble in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless the bubble's capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. The dynamic surface tension (DST), based on the actual shape of a pendant bubble with a needle, of the diffusion-controlled process is simulated using a time-dependent finite element method in this work. The shape effect and the existence of a needle on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration. The depth of solution needed to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The existence of a needle accelerates the bulk diffusion for a small bubble; however, the shape of a large pendant bubble decelerates the bulk diffusion. An example using this method on the DST data of C12E4 is illustrated at the end of this work.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la701978wDOI Listing

Publication Analysis

Top Keywords

pendant bubble
20
bubble shape
12
surface tension
12
surfactant adsorption
8
adsorption kinetics
8
bubble
8
shape
8
dynamic surface
8
shape pendant
8
existence needle
8

Similar Publications

Hypothesis: Lanthanide Binding Tag (LBT) peptides that coordinate selectively with lanthanide ions can be used to replace the energy intensive processes used for the separation of rare earth elements (REEs). These surface-active biomolecules, once selectively complexed with the trivalent REE cations, can adsorb to air/aqueous interfaces of bubbles for foam-based REEs recovery. Glutaraldehyde, an organic compound that is a homobifunctional crosslinker for proteins and peptides, can be used to enhance the adsorption and interfacial stabilization of lanthanide-bound peptides films.

View Article and Find Full Text PDF

The dilational modulus (E) of polymer films has been commonly measured using the oscillating ring/bubble/drop methods with an external force, and often without specifying the state of the adsorbed film. This study explores an approach where E was determined from the relaxations of surface tension (ST) and surface area (SA) of natural perturbations, in which ST and SA were monitored using a pendant bubble tensiometer. The E of the adsorbed film of PAA (polyacrylic acid) was evaluated for aqueous solutions at C = 5 × 10 g/cm, [MW = 5, 25, and 250 (kDa)].

View Article and Find Full Text PDF

Influence of the liquid ionic strength on the resonance frequency and shell parameters of lipid-coated microbubbles.

J Colloid Interface Sci

June 2024

Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada.

The correct measurement of the resonance frequency and shell properties of coated microbubbles (MBs) is essential in understanding and optimizing their response to ultrasound (US) exposure parameters. In diagnostic and therapeutic ultrasound, MBs are typically surrounded by blood; however, the influence of the medium charges on the MB resonance frequency has not been systematically studied using controlled measurements. This study aims to measure the medium charge interactions on MB behavior by measuring the frequency-dependent attenuation of the same size MBs in mediums with different charge densities.

View Article and Find Full Text PDF

Pendant drops of oxide-coated high-surface tension fluids frequently produce perturbed shapes that impede interfacial studies. Eutectic gallium indium or Galinstan are high-surface tension fluids coated with a ∼5 nm gallium oxide (GaO) film and falls under this fluid classification, also known as liquid metals (LMs). The recent emergence of LM-based applications often cannot proceed without analyzing interfacial energetics in different environments.

View Article and Find Full Text PDF

Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro--butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from ). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!