AI Article Synopsis

  • Researchers have developed a synthetic peptide system that self-assembles into collagen-like fibrils with defined periodic structures, a significant advancement in peptide design.
  • The peptide utilizes charged amino acids in a specific sequence to promote the formation of triple-helical structures, leading to the production of D-periodic microfibers.
  • Molecular dynamics simulations reveal that strong electrostatic and hydrogen bonding interactions stabilize these assemblies, opening up new possibilities for creating highly structured nano- and microscale materials for various applications.

Article Abstract

Self-assembling peptides have been previously designed that assemble into macroscopic membranes, nanotapes, and filaments through electrostatic interactions. However, the formation of highly ordered collagen-like fibrils, which display D-periodic features, has yet to be achieved. In this report, we describe for the first time a synthetic peptide system that self-assembles into a fibrous structure with well-defined periodicity that can be visualized by transmission electron microscopy (TEM). Specifically, we designed and synthesized a peptide that utilizes charged amino acids within the ubiquitous Xaa-Yaa-Gly triad sequence to bias the self-assembly into collagen-like homotrimeric helices that are capable of fibrillogenesis with the production of D-periodic microfibers. Potential molecular mechanisms for peptide assembly into triple-helical protomers and their subsequent organization into structurally defined, linear assemblies were explored through molecular dynamics (MD) simulations. The formation of thermodynamically stable complexes was attributed to the presence of strong electrostatic and hydrogen bond interactions at staggered positions along the linear assembly. This unexpected mimicry of native collagen structure using a relatively simple oligopeptide sequence establishes new opportunities for engineering linear assemblies with highly ordered nano- and microscale periodic features. In turn, the capacity to precisely design periodic elements into an assembly that faithfully reproduces these features over large length scales may facilitate the fabrication of ordered two- and three-dimensional fiber networks containing oriented biologically, chemically, or optically active elements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0758990DOI Listing

Publication Analysis

Top Keywords

highly ordered
8
linear assemblies
8
d-periodic collagen-mimetic
4
collagen-mimetic microfibers
4
microfibers self-assembling
4
self-assembling peptides
4
peptides designed
4
designed assemble
4
assemble macroscopic
4
macroscopic membranes
4

Similar Publications

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

Degradable features are highly desirable to advance next-generation organic mixed ionic-electronic conductors (OMIECs) for transient bioinspired artificial intelligence devices.It is highly challenging that OMIECs exhibit excellent mixed ionic-electronic behavior and show degradability simultaneously.Specially,in OMIECs,doping is often a tradeoff between structural disorder and charge carrier mobilities.

View Article and Find Full Text PDF

Background: We sought to determine the diagnostic utility of the flexion-compression (F-C) test for carpal tunnel syndrome (CTS). Using electrodiagnostic testing as the gold standard, we hypothesized that the F-C test would be a better diagnostic test for CTS as compared to the wrist flexion (Phalen's) or palmar compression (Durkan's) tests alone.

Methods: We studied patients who presented with and without CTS symptoms, designated as study and control group patients, respectively.

View Article and Find Full Text PDF

Optical accordion lattices are routinely used in quantum simulation and quantum computation experiments to tune optical lattice spacings. Here, we present a technique for creating tunable optical lattices using binary-phase transmission gratings. Lattices generated using this technique have high uniformity, contrast, lattice spacing tunability, and power efficiencies.

View Article and Find Full Text PDF

The controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!