A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. | LitMetric

AI Article Synopsis

  • - Fragment-based lead generation successfully identified a new series of cyclic amidine inhibitors for beta-secretase (BACE-1), starting with initial compounds that showed millimolar activity through NMR screening.
  • - Efforts to improve these fragments involved structure-guided techniques using X-ray crystallography and potency testing, resulting in the development of stronger micromolar inhibitors.
  • - Further optimization led to the discovery of dihydroisocytosines, achieving submicromolar potency with Compound 29 being the most promising candidate with an IC50 of 80 nM for future research.

Article Abstract

Fragment-based lead generation has led to the discovery of a novel series of cyclic amidine-based inhibitors of beta-secretase (BACE-1). Initial fragment hits with an isocytosine core having millimolar potency were identified via NMR affinity screening. Structure-guided evolution of these fragments using X-ray crystallography together with potency determination using surface plasmon resonance and functional enzyme inhibition assays afforded micromolar inhibitors. Similarity searching around the isocytosine core led to the identification of a related series of inhibitors, the dihydroisocytosines. By leveraging the knowledge of the ligand-BACE-1 recognition features generated from the isocytosines, the dihydroisocytosines were efficiently optimized to submicromolar potency. Compound 29, with an IC50 of 80 nM, a ligand efficiency of 0.37, and cellular activity of 470 nM, emerged as the lead structure for future optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm070829pDOI Listing

Publication Analysis

Top Keywords

fragment-based lead
8
lead generation
8
discovery novel
8
cellular activity
8
ligand efficiency
8
isocytosine core
8
application fragment-based
4
generation discovery
4
novel cyclic
4
cyclic amidine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!