Accurate quantification of width and density of bone structures by computed tomography.

Med Phys

BioMedical Imaging Laboratory, Wright State University and Miami Valley Hospital, One Wyoming Street, 504 East Bldg., Dayton, Ohio 45409, USA.

Published: October 2007

In computed tomography (CT), the representation of edges between objects of different densities is influenced by the limited spatial resolution of the scanner. This results in the misrepresentation of density of narrow objects, leading to errors of up to 70% and more. Our interest is in the imaging and measurement of narrow bone structures, and the issues are the same for imaging with clinical CT scanners, peripheral quantitative CT scanners or micro CT scanners. Mathematical models, phantoms and tests with patient data led to the following procedures: (i) extract density profiles at one-degree increments from the CT images at right angles to the bone boundary; (ii) consider the outer and inner edge of each profile separately due to different adjacent soft tissues; (iii) measure the width of each profile based on a threshold at fixed percentage of the difference between the soft-tissue value and a first approximated bone value; (iv) correct the underlying material density of bone for each profile based on the measured width with the help of the density-versus-width curve obtained from computer simulations and phantom measurements. This latter curve is specific to a certain scanner and is not dependent on the densities of the tissues within the range seen in patients. This procedure allows the calculation of the material density of bone. Based on phantom measurements, we estimate the density error to be below 2% relative to the density of normal bone and the bone-width error about one tenth of a pixel size.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2769102DOI Listing

Publication Analysis

Top Keywords

density bone
12
bone structures
8
computed tomography
8
profile based
8
material density
8
phantom measurements
8
density
7
bone
7
accurate quantification
4
quantification width
4

Similar Publications

This study tested whether combined ceftriaxone and adipose-derived mesenchymal stem cells (ADMSCs) would defend the spinal cord against acute spinal infection (ASI) in rodent. Adult-Male-SD rats were grouped into groups 1 (SC)/2 (ASI)/3 (ASI + ceftriaxone from days 2 to 28 after ASI induction)/4 (ASI + allogenic ADMSCs from day 2 for a total of 3 doses/3 consecutive intervals by intravenous injection)/5 (ASI + combined ceftriaxone and ADMSC) and spinal cord tissues were harvested by day 28. Circulatory levels of TNF-α/IL-6 at days 7 and 28, and these two parameters in spinal fluid at day 28 were lowest in group 1, highest in group 2, significantly lower in group 5 than in groups 3/4, and significantly lower in group 3 than in group 4 (all p < 0.

View Article and Find Full Text PDF

Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.

View Article and Find Full Text PDF

Subject-specific finite element (FE) modeling of the mandible bone has recently gained attention for its higher accuracy. A critical modeling factor is including personalized material properties from medical images especially when bone quality has to be respected. However, there is no consensus on the material model for the mandible that realistically estimates the Young's modulus of the bone.

View Article and Find Full Text PDF

Purpose: This trial aimed to investigate the efficacy of Migu capsules in treating osteoporotic low back pain.

Patients And Methods: In this single-center trial, we randomly assigned patients with osteoporotic low back pain that had lasted for 3 months in a 1:1 ratio to receive Migu capsules alongside Caltrate D in treatment group or to receive Caltrate D only in control group, both for 48 weeks. The primary outcome measure was the intensity of low back pain on a visual analog scale at 24 weeks after enrollment.

View Article and Find Full Text PDF

Focal Septic Arthritis Elicits Age and TLR2-Dependent Periarticular Bone Loss.

J Inflamm Res

December 2024

Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Introduction: Septic arthritis, primarily caused by (), is a severe joint infection that leads to joint and bone damage. lipoproteins (LPPs) bind to Toll-like Receptor 2 (TLR2), inducing arthritis and localized bone loss. Aging affects TLR2 immune response to pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!