Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The importance of Schwann cells in promoting nerve regeneration across a conduit has been extensively reported in the literature, and Schwann cell motility has been acknowledged as a prerequisite for myelination of the peripheral nervous system during regeneration after injury.
Methods: Review of recent literature and retrospective analysis of our studies with genetically modified Schwann Cells with increased motility in order to identify the underlying mechanism of action and outline the future trends in peripheral nerve repair.
Findings: Schwann cell transduction with the pREV-retrovirus, for expression of Sialyl-Transferase-X, resulting in conferring Polysialyl-residues (PSA) on NCAM, increases their motility in-vitro and ensures nerve regeneration through silicone tubes after end-to-side neurorraphy in the rat sciatic nerve model, thus significantly promoting fiber maturation and functional outcome. An artificial nerve graft consisting of a type I collagen tube lined with the genetically modified Schwann cells with increased motility, used to bridge a defect in end-to-end fashion in the rat sciatic nerve model, was shown to promote nerve regeneration to a level equal to that of a nerve autograft.
Conclusions: The use of genetically engineered Schwann cells with enhanced motility for grafting endoneural tubes promotes axonal regeneration, by virtue of the interaction of the transplanted cells with regenerating axonal growth cones as well as via the recruitment of endogenous Schwann cells. It is envisaged that mixed populations of Schwann cells, expressing PSA and one or more trophic factors, might further enhance the regenerating and remyelinating potential of the lesioned nerves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-211-72958-8_11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!