Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells.

J Cell Biochem

Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Published: April 2008

The significant promoting effects of some prenylflavonoids on cardiac differentiation of mouse embryonic stem (ES) cells via reactive oxygen species (ROS) signaling pathway were investigated. The most effective differentiation was facilitated by icariin (ICA), followed by icaritin (ICT), while desmethylicaritin (DICT) displayed the weakest but still significant inducible effect. Contrarily, DICT demonstrated the strongest anti-oxidative activity while ICA displayed only little in vitro, which was well matched with the hydroxyl (OH) numbers and the positions in the molecular structures. Therefore, ROS signaling cascades were assumed to be involved in prenylflavonoids induced cardiomyogenesis. Treatment with ICA, intracellular ROS in embryoid bodies was rapidly elevated, which was abolished by the NADPH-oxidase inhibitor apocynin; elimination of intracellular ROS by vitamin E or pyrrolidine dithiocarbamate (PDTC) inhibited ICA induced cardiomyogenesis; ROS-sensitive extracellular-regulated kinase 1, 2 (ERK1, 2) and p38 activation were further observed, the cardiomyogenesis was significantly inhibited in the presence of ERK1, 2 or p38 inhibitor U0126 or SB203580, indicating the roles of NADPH-ROS-MAPKs signaling cascades in prenylflavonoids induced cardiac differentiation. There was no difference in Nox4 NADPH oxidase expression between ICA and ICT treatments, however, ROS concentration in EBs after ICT administration was lower than that after ICA treatment, followed by less activation of ERK1, 2, and p38. These results revealed that the significant promoting effects of prenylflavonoids on cardiac differentiation was at least partly via ROS signaling cascades, and the facilitating abilities preferentially based on the nature of prenylflavonoids themselves, but anti-oxidative activity determined by the OH numbers and the positions in the structures do influence the cardiomyogenesis in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21541DOI Listing

Publication Analysis

Top Keywords

cardiac differentiation
16
ros signaling
12
signaling cascades
12
erk1 p38
12
reactive oxygen
8
oxygen species
8
involved prenylflavonoids
8
differentiation mouse
8
mouse embryonic
8
embryonic stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!