Context: Working memory (WM) deficits in patients with schizophrenia have mainly been associated with prefrontal dysfunction. However, the contribution of perceptual deficits and abnormalities in sensory areas has not been explored. The present study closes this important gap in our understanding of WM dysfunction in schizophrenia by monitoring neural activity during WM encoding and retrieval with event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI).
Objective: To investigate the neurophysiological changes that contribute to WM impairment in early-onset schizophrenia at perceptual and cognitive stages using the ERP components P1, P3a, P370, and P570 and fMRI data from extrastriate visual areas.
Design: We conducted the study between June 1, 2003, and December 20, 2006. Electroencephalographic and fMRI data were acquired separately during a visual delayed discrimination task. Participants encoded up to 3 abstract shapes that were presented sequentially for 600 milliseconds each and decided after a 12-second delay whether a probe matched 1 of the sample stimuli.
Setting: Between-group study at an inpatient psychiatric hospital and outpatient psychiatric facilities.
Participants: Seventeen adolescents with early-onset schizophrenia according to DSM-IV criteria and 17 matched controls participated in the study.
Main Outcome Measures: Amplitude of the ERP components P1, P3a, P370, and P570 and the fMRI signal from extrastriate visual areas.
Results: The P1 amplitude was reduced in patients during encoding and retrieval. The P1 amplitude increased with WM load during encoding only in controls. In this group, a stronger P1 amplitude increase predicted better WM performance. The P1 reduction was mirrored by reduced activation of visual areas in patients in fMRI. The P370 amplitude during encoding and retrieval was also reduced in patients.
Conclusions: The P1 amplitude reduction indicates an early visual deficit in adolescents with schizophrenia. Our findings suggest that P1 is of particular relevance for successful WM encoding. Early visual deficits contribute to impaired WM in schizophrenia in addition to deficits in later memory-related processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archpsyc.64.11.1229 | DOI Listing |
Hippocampus
January 2025
Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.
In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms.
View Article and Find Full Text PDFJ Pathol Inform
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America.
With the increasing utilization of exome and genome sequencing in clinical and research genetics, accurate and automated extraction of human phenotype ontology (HPO) terms from clinical texts has become imperative. Traditional methods for HPO term extraction, such as PhenoTagger, often face limitations in coverage and precision. In this study, we propose a novel approach that leverages large language models (LLMs) to generate synthetic sentences with clinical context, which were semantically encoded into vector embeddings.
View Article and Find Full Text PDFKN J Cartogr Geogr Inf
December 2024
Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany.
When using navigation devices the "cognitive map" created in the user's mind is much more fragmented, incomplete and inaccurate, compared to the mental model of space created when reading a conventional printed map. As users become more dependent on digital devices that reduce orientation skills, there is an urgent need to develop more efficient navigation systems that promote orientation skills. This paper proposes to consider brain processes for creating more efficient maps that use a network of optimally located cardinal lines and landmarks organized to support and stabilize the neurocognitive structures in the brain that promote spatial orientation.
View Article and Find Full Text PDFCurr Protoc
December 2024
Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
Integrons mediate the acquisition and expression of gene cassettes (GCs). The production of beta-lactamases (BLs) is the most relevant mechanism of beta-lactams resistance. To explore the role of integrons in BL genes dissemination, we retrieved sequences and metadata from the INTEGRALL database and performed literature review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!