Platelet activation is a critical process during inflammation, thrombosis, and cancer. Here, we show that galectin-1, an endogenous lectin with immunoregulatory properties, plays a key role in human platelet activation and function. Galectin-1 binds to human platelets in a carbohydrate-dependent manner and synergizes with ADP or thrombin to induce platelet aggregation and ATP release. Furthermore, galectin-1 induces F-actin polymerization, up-regulation of P-selectin, and GPIIIa expression; promotes shedding of microvesicles; and triggers conformational changes in GPIIb/IIIa. In addition, exposure to this lectin favors the generation of leukocyte-platelet aggregates. A further mechanistic analysis revealed the involvement of Ca(2+) and cyclic nucleotide-dependent pathways in galectin-1-mediated control of platelet activation. Finally, expression of endogenous galectin-1 in human platelets contributes to ADP-induced aggregation. Our study reveals a novel unrecognized role for galectin-1 in the control of platelet physiology with potential implications in thrombosis, inflammation, and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.07-9524com | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!