Restriction of glutamine synthetase to the nervous system is mainly achieved through the mutual function of the glucocorticoid receptor and the neural restrictive silencing factor, NRSF/REST. Glucocorticoids induce glutamine synthetase expression in neural tissues while NRSF/REST represses the hormonal response in non-neural cells. NRSF/REST is a modular protein that contains two independent repression domains, at the N and C termini of the molecule, and is dominantly expressed in nonneural cells. Neural tissues express however splice variants, REST4/5, which contain the repression domain at the N, but not at the C terminus of the molecule. Here we show that full-length NRSF/REST or its C-terminal domain can inhibit almost completely the induction of gene transcription by glucocorticoids. By contrast, the N-terminal domain not only fails to repress the hormonal response but rather stimulates it markedly. The inductive activity of the N-terminal domain is mediated by hBrm, which is recruited to the promoter only in the concomitant presence of GR. Importantly, a similar inductive activity is also exerted by the splice variant REST4. These findings raise the possibility that NRSF/REST exhibits a dual role in regulation of glutamine synthetase. It represses gene induction in nonneural cells and enhances the hormonal response, via its splice variant, in the nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M707366200 | DOI Listing |
Benef Microbes
January 2025
Université Paris-Saclay, 27057INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Alzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Dioxygen (O) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O or C-H bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!