A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. | LitMetric

The ability of certain plants, invertebrates, and microorganisms to survive almost complete loss of water has long been recognized, but the molecular mechanisms of this phenomenon remain to be defined. One phylogenetically widespread adaptation is the presence of abundant, highly hydrophilic proteins in desiccation-tolerant organisms. The best characterized of these polypeptides are the late embryogenesis abundant (LEA) proteins, first described in plant seeds >20 years ago but recently identified in invertebrates and bacteria. The function of these largely unstructured proteins has been unclear, but we now show that a group 3 LEA protein from the desiccation-tolerant nematode Aphelenchus avenae is able to prevent aggregation of a wide range of other proteins both in vitro and in vivo. The presence of water is essential for maintenance of the structure of many proteins, and therefore desiccation stress induces unfolding and aggregation. The nematode LEA protein is able to abrogate desiccation-induced aggregation of the water-soluble proteomes from nematodes and mammalian cells and affords protection during both dehydration and rehydration. Furthermore, when coexpressed in a human cell line, the LEA protein reduces the propensity of polyglutamine and polyalanine expansion proteins associated with neurodegenerative diseases to form aggregates, demonstrating in vivo function of an LEA protein as an antiaggregant. Finally, human cells expressing LEA protein exhibit increased survival of dehydration imposed by osmotic upshift, consistent with a broad protein stabilization function of LEA proteins under conditions of water stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2084298PMC
http://dx.doi.org/10.1073/pnas.0706964104DOI Listing

Publication Analysis

Top Keywords

lea protein
20
broad protein
8
protein stabilization
8
stabilization function
8
lea proteins
8
function lea
8
protein
7
proteins
7
lea
7
hydrophilic protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!