A library of 18 hexapeptide analogs was synthesized, including sub-libraries of N- or C-methylation of the parent hexapeptide Phe-Gly-Gly-Gly-Gly-Phe, as well as backbone cyclized analogs of each linear analog with various ring sizes. N- or C-methylation as well as cyclization (but not backbone cyclization) have been suggested to improve intestinal permeability and metabolic stability of peptides in general. Here we aimed to assess their applicability to hydrophilic peptides. The intestinal permeability (Papp) of the 18-peptide library was in the range of 0.2-6.8 x 10-6 cm/sec. Based on several tests, we concluded that the absorption mechanism of all tested analogs is paracellular, regardless of the structural or conformational modifications. In all cases, backbone cyclization increased Papp (5-fold) in comparison to the linear analogs due to the smaller 3D size and also dramatically decreased peptide proteolysis by brush border enzymes. N- or C-methylation did not enhance the permeability of the linear analogs in this series.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm070836dDOI Listing

Publication Analysis

Top Keywords

backbone cyclization
12
intestinal permeability
12
linear analogs
8
analogs
5
structural conformation
4
conformation modifications
4
modifications including
4
backbone
4
including backbone
4
cyclization
4

Similar Publications

Diaryl thieno-[3,4-]thiophenes (TT) are photoswitchable compounds that operate through reversible photoinduced cyclization/cycloreversion and have been designed specifically for integration within π-conjugated polymers to switchably manipulate polymer electronic properties. Here we report on how cross conjugating the central TT moiety impacts photocyclization dynamics as interrogated using transient absorption spectroscopy (TAS) for a series of switches built with electron-rich substituents that have various electronic interaction strengths with the TT core. For cross-conjugated structures exhibiting a propensity to switch in steady-state photoconversion experiments, ultrafast TAS reveals signatures of rapid dynamics (occurring within <1-10 ps) similar to those observed for unsubstituted switches and that are consistent with photocyclization.

View Article and Find Full Text PDF

Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades.

J Biol Chem

December 2024

Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.

The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the poly-cyclic sterol triterpenoids. In particular, as these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases.

View Article and Find Full Text PDF

Self-Immolative Polymers Derived from Renewable Resources via Thiol-Ene Chemistry.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6 A 5B7, Canada.

The development of polymers from renewable resources is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, the design of polymers incorporating both of these features remains a challenge.

View Article and Find Full Text PDF

Expedient Synthesis of Substituted Thieno[3,2-]thiophenes and Selenopheno[3,2-]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives.

Molecules

November 2024

Hunan Province Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China.

Thieno[3,2-]thiophenes are used as key components in optoelectronic materials, porous hydrogen-storage hosts, organic solar cells, and polymer semiconductors. A step-efficient synthetic protocol was proposed herein for obtaining multisubstituted thieno[3,2-]thiophene and selenopheno[3,2-]selenophenes in moderate to good yields via the bisulfur/biselenium cyclization of alkynyl diols with I/NaSO or selenium. Using this strategy, substitution patterns were obtained for backbone modification in functional materials.

View Article and Find Full Text PDF

Spiro skeletons have emerged as a privileged class of chiral carriers across various research fields, including asymmetric catalysis and functional materials, due to their remarkable configurational rigidity. However, limited structural diversity of spiro frameworks significantly restricts the expansion of their applications. Here we present a new class of axially chiral spiro-bisindole frameworks and report their first enantioselective construction via a chiral phosphoric acid-catalyzed intramolecular dehydrative cyclization reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!