Background: The mechanism by which hypertriglyceridemia (HTG) leads to pancreatitis is not clear. We sought to determine whether the genes involved in pancreatic ductal or acinar cell injury, including the cationic trypsinogen gene [protease, serine, 1 (trypsin 1) (PRSS1)], the pancreatic secretory trypsin inhibitor gene [serine peptidase inhibitor, Kazal type 1 (SPINK1)], the cystic fibrosis transmembrane conductance regulator gene [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette subfamily C, member 7) (CFTR)], and inflammation genes such as tumor necrosis factor [tumor necrosis factor, TNF superfamily, member 2 (TNF)] are associated with hyperlipidemic pancreatitis (HLP) in patients with HTG.

Methods: We performed genetic analysis of 126 HTG patients in Taiwan (46 with HLP and 80 without HLP). The entire coding and intronic regions of the PRSS1, SPINK1, and CFTR genes were identified by heteroduplex analysis techniques and were confirmed by sequencing analysis. The presence of 125G/C, 1001 + 11C>T, 1540A>G (Met470Val), 2694T>G, and 4521G>A in CFTR, the presence of 272C>T in SPINK1, and TNF promoter polymorphisms (nucleotide positions 1031, 863, 857, 308, and 308) were measured by direct sequencing.

Results: Of the 126 HTG patients, 13 (10.3%) carried a CFTR mutation. No PRSS1 or SPINK1 mutations were detected in our patients or in HTG controls. The CFTR gene mutation rates in HTG with and without HLP were 26.1% (12 of 46) and 1.3% (1 of 80), respectively (P <0.0001). The CFTR gene mutations were all Ile556Val. A multivariate analysis of HTG patients indicated that triglycerides, CFTR 470Val, and TNF promoter 863A were independent risk markers for HLP.

Conclusions: This genetic study is the first one to address the association of HLP with the CFTR mutation/variant/haplotype and TNF promoter polymorphism in a Chinese HTG population. The results suggest that the occurrence of HLP is multifactorial and polygenic.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2007.093492DOI Listing

Publication Analysis

Top Keywords

fibrosis transmembrane
12
transmembrane conductance
12
conductance regulator
12
necrosis factor
12
cystic fibrosis
8
tumor necrosis
8
factor tnf
8
tnf promoter
8
hyperlipidemic pancreatitis
8
126 htg
8

Similar Publications

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.

View Article and Find Full Text PDF

The potentiator VX-770 (ivacaftor) has been approved as a monotherapy for over 95 cystic fibrosis (CF)-causing variants associated with gating/conductance defects of the CF transmembrane conductance regulator (CFTR) channel. However, despite its therapeutic success, VX-770 only partially restores CFTR activity for many of these variants, indicating they may benefit from the combination of potentiators exhibiting distinct mechanisms of action (i.e.

View Article and Find Full Text PDF

Diagnostic yield of cystic fibrosis from a South Australian monocentric cohort: a retrospective study.

BMJ Open

January 2025

Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia

Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.

Design: A retrospective study over a 5-year period (January 2018-December 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!