Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2262049PMC
http://dx.doi.org/10.1016/j.devcel.2007.10.005DOI Listing

Publication Analysis

Top Keywords

copii coat
12
sec13-sec31 complex
12
vesicle formation
8
complex
5
genetic basis
4
basis craniofacial
4
craniofacial disease
4
disease insight
4
copii
4
insight copii
4

Similar Publications

HO-1 impairs the efficacy of radiotherapy by redistributing cGAS and STING in tumors.

J Clin Invest

December 2024

State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer.

Article Synopsis
  • Type I IFNs play a crucial role in the effectiveness of radiotherapy (RT), but tumor cells have developed mechanisms to inhibit their production, which is not fully understood.
  • A study using CRISPR screening identified hemeoxygenase 1 (HO-1) as a key regulator that disrupts the STING pathway and impairs the production of IFN-I during RT.
  • Targeting HO-1 could improve the efficacy of RT by enhancing immune response, as high levels of HO-1 were linked to worse patient outcomes post-RT in various tumors.
View Article and Find Full Text PDF

Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes.

View Article and Find Full Text PDF

TMEM39A and TMEM131 facilitate bulk transport of ECM proteins through large COPII vesicle formation.

J Genet Genomics

November 2024

Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. Electronic address:

The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles.

View Article and Find Full Text PDF

Cryo-electron tomography reveals how COPII assembles on cargo-containing membranes.

Nat Struct Mol Biol

November 2024

Institute of Structural and Molecular Biology, Birkbeck College, London, UK.

Proteins traverse the eukaryotic secretory pathway through membrane trafficking between organelles. The coat protein complex II (COPII) mediates the anterograde transport of newly synthesized proteins from the endoplasmic reticulum, engaging cargoes with a wide range of size and biophysical properties. The native architecture of the COPII coat and how cargo might influence COPII carrier morphology remain poorly understood.

View Article and Find Full Text PDF

SEC31a-ATG9a Interaction Mediates the Recruitment of COPII Vesicles for Autophagosome Formation.

Adv Sci (Weinh)

November 2024

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.

Autophagy plays an important role in determining stem-cell differentiation. During the osteogenic differentiation of mesenchymal stem cells (MSCs), autophagosome formation is upregulated but the reason is unknown. A long-standing quest in the autophagy field is to find the membrane origin of autophagosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!