Inactivation of the periaqueductal gray attenuates antinociception elicited by stimulation of the rat medial preoptic area.

Neurosci Lett

Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

Published: December 2007

The medial preoptic area (MPOA) is a sexually dimorphic structure that plays key roles in gonado-steroidal regulation and thermoregulation. The MPOA may be involved in sex-based differences in nociceptive processing and steroid hormones effect on pain thresholds. Consistent with this, there is evidence that MPOA can produce antinociception or hyperalgesia. MPOA stimulation inhibits spinal cord or trigeminal neuronal responses to noxious stimuli or produces analgesia, yet most of these studies utilized electrical stimulation which antidromically activates periaqueductal gray (PAG) and rostroventromedial medulla (RVM) neurons involved in descending modulation of nociception. Effects of selective activation of MPOA neurons on behavioral indices of antinociception and the site-specificity of such responses are unknown. To address these questions, we examined the influence of MPOA microinjections of d,l homocysteate (DLH) on hindlimb and tail nocifensive reflexes in lightly anesthetized rats. DLH, but not saline, microinjections into several MPOA subregions markedly increased withdrawal response latencies to noxious thermal stimuli. Antinociceptive effects of MPOA activation were abolished by microinjection of lidocaine into PAG. These results suggest that activation of MPOA neurons produces antinociception that is at least partly mediated by projections to PAG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2170883PMC
http://dx.doi.org/10.1016/j.neulet.2007.09.070DOI Listing

Publication Analysis

Top Keywords

mpoa
9
periaqueductal gray
8
medial preoptic
8
preoptic area
8
activation mpoa
8
mpoa neurons
8
inactivation periaqueductal
4
gray attenuates
4
antinociception
4
attenuates antinociception
4

Similar Publications

Lead (Pb) exposure during perinatal development alters testosterone (T) concentrations and delays puberty in children and laboratory rodents. In addition, exposure to the metal during adult life decreases T and libido in men and affects male reproductive behaviour (MRB) in rats. MRB is regulated by various brain nuclei including the medial preoptic area (MPOa) and the medial amygdala (MeA), in which T and oestradiol (E) act through their respective androgen (AR) and oestrogen (ER) receptors.

View Article and Find Full Text PDF

Aggression and mating of male mice are strongly associated with Esr1-expressing neurons in the bed nucleus of the stria terminalis (BNSTpr) and hypothalamus in the vomeronasal pathway. By projecting to the downstream hypothalamus, the upstream BNSTpr gates mating and aggression of male mice and maternal behavior of female mice. The medial preoptic area (MPOA) and ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) are two subdivisions of the hypothalamus downstream.

View Article and Find Full Text PDF

Introduction: Corticotropin-releasing factor receptor 1 (CRFR1) is a key regulator of neuroendocrine and behavioral stress responses. Previous studies have demonstrated that CRFR1 in certain hypothalamic and preoptic brain areas is modified by chronic stress and during the postpartum period in female mice, although the potential hormonal contributors to these changes are unknown.

Methods: This study focused on determining the contributions of hormones associated with stress and the maternal period (glucocorticoids, prolactin, estradiol/progesterone) on CRFR1 levels using a CRFR1-GFP reporter mouse line and immunohistochemistry.

View Article and Find Full Text PDF

Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools.

Endocrinology

November 2024

Department of Physiology, Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.

The importance of hormones in mediating a behavioral transition in mammals from a virgin or nonparenting state to parental state was established around 50 years ago. Extensive research has since revealed a highly conserved neural circuit that underlies parental behavior both between sexes and between mammalian species. Within this circuit, hormonal action in the medial preoptic area of the hypothalamus (MPOA) has been shown to be key in timing the onset of parental behavior with the birth of offspring.

View Article and Find Full Text PDF

The UAV path planning algorithm has many applications in urban environments, where an effective algorithm can enhance the efficiency of UAV tasks. The main concept of UAV path planning is to find the optimal flight path while avoiding collisions. This paper transforms the path planning problem into a multi-constraint optimization problem by considering three costs: path length, turning angle, and collision avoidance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!