Background: Chromosomes must biorient on the mitotic spindle, with the two sisters attached to opposite spindle poles. The spindle checkpoint detects unattached chromosomes and monitors biorientation by detecting the lack of tension between two sisters attached to the same pole. After the spindle has been depolymerized and allowed to reform, budding yeast sgo1 mutants fail to biorient their sister chromatids and die as cells divide.
Results: In sgo1 mutants, chromosomes attach to microtubules normally but cannot reorient if both sisters attach to the same pole. The mutants' fate depends on the position of the spindle poles when the chromosomes attach to microtubules. If the poles have separated, sister chromatids biorient, but if the poles are still close, sister chromatids often attach to the same pole, missegregate, and cause cell death.
Conclusions: These observations argue that budding yeast mitotic chromosomes have an intrinsic, geometric bias to biorient on the spindle. When the poles have already separated, attaching one kinetochore to one pole predisposes its sister to attach to the opposite pole, allowing the cells to segregate the chromosomes correctly. When the poles have not separated, the second kinetochore eventually attaches to either of the two poles randomly, causing orientation errors that are corrected in the wild-type but not in sgo1 mutants. In the absence of spindle damage, sgo1 cells divide successfully, suggesting that kinetochores only make stable attachments to microtubules after the cells have entered mitosis and separated their spindle poles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2007.09.056 | DOI Listing |
Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.
View Article and Find Full Text PDFCell Death Dis
January 2025
Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo.
View Article and Find Full Text PDFChromosome Res
January 2025
Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.
View Article and Find Full Text PDFCurr Oncol
December 2024
Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.
View Article and Find Full Text PDFFly (Austin)
December 2025
Department of Biology, Indian Institute of Science Education & Research, Pune, India.
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In , PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!