Protein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B. Here we identify the ubiquitin-specific protease 3 USP3 as a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. The ZnF-UBP domain of USP3 mediates uH2A-USP3 interaction. Functional ablation of USP3 by RNAi leads to delay of S phase progression and to accumulation of DNA breaks, with ensuing activation of DNA damage checkpoint pathways. In addition, we show that in response to ionizing radiation, (1) uH2A redistributes and colocalizes in gamma-H2AX DNA repair foci and (2) USP3 is required for full deubiquitination of ubiquitin-conjugates/uH2A and gamma-H2AX dephosphorylation. Our studies identify USP3 as a novel regulator of H2A and H2B ubiquitination, highlight its role in preventing replication stress, and suggest its involvement in the response to DNA double-strand breaks. Together, our results implicate USP3 as a novel chromatin modifier in the maintenance of genome integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2007.10.034DOI Listing

Publication Analysis

Top Keywords

chromatin modifier
8
phase progression
8
dna damage
8
usp3 novel
8
usp3
7
dna
5
human usp3
4
usp3 chromatin
4
modifier required
4
required phase
4

Similar Publications

Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome.

Genome Biol Evol

January 2025

Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.

This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.

View Article and Find Full Text PDF

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

High-resolution analysis of human centromeric chromatin.

Life Sci Alliance

April 2025

National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA

Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

DNA methylation, histone acetylation in the regulation of memory and its modulation during aging.

Front Aging

January 2025

Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.

Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!