A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Memantine prevents MDMA-induced neurotoxicity. | LitMetric

Memantine prevents MDMA-induced neurotoxicity.

Neurotoxicology

Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Nucli Universitari de Pedralbes, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.

Published: January 2008

MDMA (ecstasy) is an illicit drug causing long-term neurotoxicity. Previous studies demonstrated the interaction of MDMA with alpha-7 nicotinic acetylcholine receptor (nAChR) in mouse brain membranes and the involvement of alpha-7 nicotinic acetylcholine receptors (nAChR) in dopaminergic neurotoxicity induced by MDMA in mice. The aim of the present study was to investigate the utility of memantine (MEM), an alpha-7 nAChR antagonist used for treatment of Alzheimer's disease patients, to prevent neurotoxicity induced by MDMA in rats and the oxidative effect of this amphetamine derivative in mice striatal synaptosomes. In isolated mouse striatal synaptosomes (an in vitro model of MDMA neurotoxicity of dopaminergic origin), MDMA (50 microM)-induced reactive oxygen species (ROS) production that was fully inhibited by MEM (0.3 microM). This effect of MEM was fully prevented by PNU 282987 (0.5 microM), a specific agonist of alpha-7 nAChR. The preventive effect of MEM on this oxidative effect can be attributed to a direct antagonism between MDMA (acting probably as agonist) and MEM (acting as antagonist) at the alpha-7 nAChR. In Dark Agouti rats (an in vivo model of MDMA neurotoxicity of serotonergic origin), a single dose of MDMA (18 mg/kg) induced persistent hyperthermia, which was not affected by MEM pre-treatment. [(3)H]Paroxetine binding (a marker of serotonergic injury) was measured in the hippocampus of animals killed at 24h and 7 days after treatment. MDMA induced a significant reduction in [(3)H]paroxetine binding sites at both times of sacrifice that was fully prevented by pre-treatment with MEM. Since previous studies demonstrate that increased glutamate activity is not involved in the neurotoxic action of MDMA, it can be concluded that the effectiveness of MEM against MDMA-induced neurotoxicity would be the result of blockade of alpha-7 nAChR, although an indirect mechanism based on the interplay among the various neurotransmission systems leading to an increase in basal acetylcholine release should also be taken into account.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2007.09.005DOI Listing

Publication Analysis

Top Keywords

alpha-7 nachr
16
mdma
11
mdma-induced neurotoxicity
8
previous studies
8
alpha-7 nicotinic
8
nicotinic acetylcholine
8
neurotoxicity induced
8
induced mdma
8
mem
8
striatal synaptosomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!